
d
79-1959

Abstract

A UNIVERSAL FLOWCHARTER

0. Harel, P . Norvig, J . Rood, T . To
Higher Order Software, Inc.
Cambridne, Massachusetts

A software tool has been developed to auto-
matically produce flowcharts and concordances of
user source programs. These flowcharts represent
structured prooramninp flow of control constructs,
as opposed to t radi t ional flowcharts which rep-
resent assembly level flow of control. The Flow- '

charter uses a table driven parse technique, so
proqrams in v i r tua l ly any language can be processed
by changing tables.
rules for the languaae, where each rule i s aua-
mented by direct ives indicating what plot t ing
actions to take, and what tokens to include in the
concordance.

These tables consis t of BNF

1. Introduction

I t has been shown'" that structured
'programming techniques ana formal documentation
standards can be useful in expediting the software
development process. An automated tool t o support
structured program development is the Universal
Flowcharter, (UFC) which was developed fo r NASA's
MUST system3.

Plthough other automatic flowcharting pmgrams
e x i s t , the UFC i s unique fo r several reasons: i t
produces structured flowcharts, i t i s universal,
and i t produces concordances of program ident i f ie rs .
Of par t icular in te res t i s that execution flow is
assumed to re turn i n l ine a t the completion of
every control construct. This simplifies the repre-
sentation of programs considerably. Structured flow-
charts are described in Section 11. The operation of
the UFC as a universal* t ranslator i s discussed in
Section 111. Source programs are a lso analyzed for
concordance information, as described i n Section I\!,
Some de ta i l s of implementation are given i n Section
V , and f ina l ly , sow directions for future work
appear in Section VI. Additional information'" i s
available from HOS, Inc.

11. Structured Flowcharts

One approach to Structured Programinq pro-
poses t h a t proTrams should be written using three
major control constructs': sequence, select ion,
and iteration**. Figures 1-3 show how these con-
s t ruc ts are represented in structured flowcharts
and in t radi t ional flowcharts.

Structured flowcharts have a number of con-
s t r a in t s and conventions which make them eas ie r t o
read than t radi t ional flowcharts. For example,
statements in seauence (Fia. 1) are alwavs lined

. .

. _ .
u p in the same column, connected by l i n& going
s t ra ight down the page.
cases of a selection (Fig. 2) are lined u p , inden-

Similarly, a l te rna te

ted one column to 'the right of the box containing

* Universal means tha t a program written i n any
lanquage can be translated into a connon language
of flowcharts.
"'In f a c t , Bohm and Jacopini' have proven a& pro-
gram can be written th i s way.

*. rZ(.

STRUCTURED TRADITIONAL (format var ies)

Fig. 1 SEQUENCE

I
F i g . 2 SELECTION

Fig. 3 ITERATION
U

the selection condition. There can be one, two, or
more cases to se lec t from. The multi-case selec-
tion construct (e.g.. PASCAL case statement) i s
neater w i t h structured flowcharting than with the
t radi t ional approach. The i te ra t ion construct
shown i n Fia. 3 re f lec ts the wav 1000s a re usuallv
written i n kructured programing, w i t h the loop "
body indented t o the r ight .

Flow o f control in the program i s always rep-
resented by l ines t h a t flow down the page (sequence),
t o the r i g h t (i t e r a t ion) or down and then r igh t

.., .. ,

(s e l e c t i o n) , but never up o r t o the l e f t . There-
f o r e there i s no need f o r arrows on l i n e s , as the
d i r e c t i o n i s unambiguous. We have the simple con-
vent ion "go r i g h t when you can, down if you mbst,
and back when you c a n ' t . " When we reach a box w i t h
no l i n e s leading out, c o n t r o l re tu rns t o the near-
e s t box above and t o the l e f t , and then continues.
This i s s i m i l a r t o the idea o f r e t u r n i n g from a
subroutine, and has no e x p l i c i t f low l i n e asso-
c i a t e d w i t h i t . T r a d i t i o n a l f lowchar ts have no . cons t ra in ts on the placement of boxes, and l i n e s
may lead i n any d i r e c t i o n , t u r n several corners,
merge together, and even cross one another.
" r a t s nest" approach makes i t hard t o f o l l o w the
f l o w o f c o n t r o l .

Th is

The arguments f o r adopting s t ruc tu red over
t r a d i t i o n a l f lowchar ts a re s i m i l a r t o those sup-
p o r t i n g s t ruc tu red over t r a d i t i o n a l programing,
and inc lude d i s c i p l i n e , c l a r i t y , and modular i ty .
We t r u s t the reader i s f a m i l i a r w i t h these argu-
ments, and agrees t h a t s t ruc tu red f lowcharts m e r i t
f u r t h e r exp lo ra t ion .

I n Figures 1-3 we have seen d i s t i n c t l y shaped
s t ruc tu red f lowchar t boxes f o r i t e r a t i o n and s e l -
ec t ion . These shapes are used only i n those con-
t e x t s . We have a l s o seen the rectangle, used f o r
statements no t r e l a t e d t o f low o f c o n t r o l (e.g.,
assignment statements). These are the three most
i n p o r t a n t const ructs . I n Appendix I we describe
the cons t ruc ts chosen t o correspond t o the s t ruc-
tured programming concepts o f procedure statemen.ts,
b lock statements, o a r a l l e l processing, and non-
d e t e r m i n i s t i c processing. There i s a lso a p r o v i s i o n
fo r o f f page connections i n the case of programs
too b i g t o f it on one page.
be indented over the r i g h t margin a re labeled and
continued l a t e r on a separate paqe. These e i g h t

Constructs t h a t would

guage."
compi la t ion.
i n t o what we c a l l the Universa l Flowchart Language
(UFL). S t r ings i n t h i s language are composed o f
meta-symbols, which i n d i c a t e what boxes and l i n e s
t o p r i n t , in terspersed w i t h t e x t from the source
program, which w i l l be p r i n t e d i n s i d e the boxes.
We speak o f the const ructs as templates, which are
f i l l e d i n w i t h source t e x t .

I n the UFC, t h i s i s done as a two pass
F i r s t the input program i s t rans la ted

For example, if we were presented w i t h the i n -

" I F A > B THEN MAX = A ELSE MAX = E"

put s t r i n g :

(4)

we would use the meta-symbol template for a two- '

case s e l e c t i o n statement:

(+ 1- -1 ; I- -I) (5)

t o produce the UFL s t r i n g :

(A > B + 1-T-1 MAX = A; 1 - F - I MAX = E) (6)

To speci fy t h i s t r a n s l a t i o n process, we de-
s c r i b e the source l a n uage by a s e t of r u l e s i n
Backus-Naur Form (BNF?, w i t h a corresponding s e t of
UFL t r a n s l a t i o n r u l e s . The r u l e s t o e f f e c t the 6
above t r a n s l a t i o n are shown here:

BNF Rules
stmt: = I F t e s t then stmt e lse

stmt: = i d e n t = expression

t e s t : = i d e n t r e l o p ident
then: = THEN

e lse: = ELSE stmt

UFL Rules
(2 + 3 4 5)
1 2 3

1 2 3

I - T - I
; 1 - F - l 2

const ructs were c a r e f u l l y chosen-to rel iresent-
s t ruc tu red Programs i n a c lear , e a s i l y readable
format.

The numbers i n the UFL t r a n s l a t i o n r u l e s a re
gaps i n the template, t o be f i l l e d i n by the UFL
t r a n s l a t i o n of the corresponding token on the ri h t
hand s ide of the BNF r u l e . For example, r u l e (97
has the UFL t r a n s l a t i o n "1 2 3 . " This means the
UFL t r a n s l a t i o n w i l l cons is t of the same t h r e e
tokens as the source i n p u t .
adds the meta-symbols "('I, tl+l', and ") " t o the
source statement, o r looked a t another way, i t
places p o r r i o n f , o f the source i n t o the s e l e c t i o n

We have presented the argument t h a t those who

Hamilton and Zeld in have

code using s t ruc tu red p r o w a n i n g conventions would
want t o use the UFC.
a lso appears t o be t r u e .
observed, "when the automatic s t r u c t u r e d f lowchar ter
was f i r s t introduced, many programers were con-
ver ted t o s t ruc tu red programmers over n igh t , s ince
t h i s t o o l n o t on ly helped t o enforce s t ruc tu red template, (e) .
programing, bu t I t a l s o saved the prog t -mers the
work of manually producing a f lowchart.

.J

I n a d d i t i o n t h e f o l l o w i n g
I n cont ras t , r u l e (7)

!

The process o f f i l l i n g i n templates can recurse
to a r b i t r a r v deDth. For example, the e n t i r e UFL

On t h i s note, l e t us now t u r n t o a more de- s t r i n g (6) might be nested i n s i d e a DO loop, which
i s nested i n s i d e a PROGRAM. The UFL r u l e f o r
PROGRAM would r e t u r n t h i s deeply nested UFL t rans-
l a t i o n and would tnark the end of the t r a n s l a t i o n
process.

t a i l e d d e s c r i p t i o n of the Flowcharter i t s e l f .

111. A Universa l T rans la to r

The UFC can be compared t o a compiler - i t
has a h igh l e v e l source program as input , and pro-
duces s t ruc tu red f lowcharts ins tead of machine
i n s t r u c t i o n s as output. However, t h e UFC can a l s o
be compared t o a cunpi ler -compl ler , because i t i s
designed t o work on any a r b i t r a r y source language.
These two aspects o f the UFC w i l l be discussed i n
t h i s section, fo l lowed by a discuss ion o f l e x i c a l
problems.

UFC as a Compiler

When the t r a n s l a t i o n i s completed, the nex t

This i s a fa i r l y s t r a i g h t -
Each template has a p a r t i c u l a r

s tep i s t o p r i n t the f lowchar t which the nested
template represents.
forward process.
cons t ruc t associated w i t h it.
causes the enclosed t e x t (1) t o be p l o t t e d as a
l a b e l , and (+ ;) g ives r i s e t o a s e l e c t i o n
statement w i t h two a l t e r n a t i v e s .
p l a t e (6) would be p l o t t e d as shown on the l e f t of
F igure 2.
corresDonds t o a l e v e l of indenta t ion i n the r e -

For example, 14-1

Thus, UFL tem-

Each l e v e l o f nes t ing of UFL templates

Producing a f lowchar t can be seen as a transr i u l t i n g f lowcharts.
r u l e i s t h a t each procedure o r subrout ine I S

The on ly exception t o t h i s ii

l a t i o n process from source language t o "box lan-

219

plotted on a separate page, even if its definition
is nested inside another construct. ident B

relop >
ident A
keyword IF

-- UFC as a Compiler-Compiler
I

0 2)

The translation process as described above is
a straightforward, well understood procedure. It
could be implemented by any of several techniques
described in the literature, and is an easy task -
for one particular source language.

However, the flowcharter was required to be
universal, to accept any reasonable source language.
This Puts severe constraints on the sDectrum o f

i.

possible designs.
sign of Compiler-Compilers.

The UFL must borrow from the de-

Compiler-Compilers, or Translator Writing
Systems, have long been in use as software develop-
ment tools. Typically, they allow the user to
write a BNF description of the language to be pro-
cessed, and to associatea semantic action with
each syntax rule. The semantic action can be ar-
bitrary, and might involve any of various things:
output some machine instructions, make symbol table
.entries, update the location counter, invoke a
macro substitution, etc.
power, but responsibilities as well. It is easy to
write actions that introduce obscure but non-trivial
errors.

This gives the user

i
The UFC makes this process less error prone by

limiting the semantic action to one possible oper-
ation - outputting translations.
ally two translations for each BNF rule, the UFL
translation described above, and the concordance . information which will be described in Section I V .

There are actu-

L To satisfy the requirements of universality,
the UFC simulates an automaton which can process
p y language. The algorithm used is LR(1) parsir~g,~
which means the input is scanned from Left to right,
producing a Rightmost parse, looking at 1 input
token at a time.

Conceptually, the components of the automaton
are a pointer to the input stream, a stack of in-
termediate results, a number indicating the current

perform. This table can be constructed directly
from the BNF rules and translations.

' state of the system, and a table of actions to

The action to perform at a given instance de-
pends on the current state and the input token.
There are only two major actions: shifting the
input token onto the stack, and reducing the stack
according to one of the BNF rules.
tions are reoeated in a ~ O O D that is terminated bv

These two ac-
~~~~ ~ . ~~ . ~~ ~~~ 

one of~the two auxilary actions: accepting-the 
input string, and then passing the stack to the 
printing routine, or rejecting the input and print- 
ing an error message. 

To be more specific, to shift means to take 
the input token, push it onto the stack, shift the 
pointer to the next token, and enter a new state. 
A reduction is the process of replacinn the right 
hand side of a 8NF rule by the corresponding left 
hand side. 
the UFL translation, i.e., filling in the template. 
An examDle should make this clearer. Consider 

In our framework, this involves making 

u parsing'string (4). The first four actions would 
be shifts, leaving the stack looking like this: 

test I A > B  (13) 
keyword) I F  1 

After some more actions, we reach this state: 

Finally, reducing by rule (7) yields: 

[stmt 1 A > B + /-T-/ MRX = A; /-F-/ w \ X  = 8) J (15) 

This is 3n example of the basiF; UFL template for a 
selection statement, " (  + ; ) , with the approp- 
riate source text filled in. We also have filled 
in the UFL template for a label "/- -/" with the 
letters T and F. When the parse is completed, the 
accept action will cause this template to be prin- 
ted as shown on the left of Figure 2 in Section 11. 

The important point is the fact that this 
table-driven algorithm can accept any input lan- 
guage for which LR(1) grammars can be written. 
{Fortunately, virtually all languages have an LR(1) 
gramar.) 
we merely change tables, writing new translation 
rules. It is easier and less error-prone,to 
write these rules than it is to write arbltrary 
subroutines, as would typically be done in a 
compi 1 er-compi ler environment. 
tables is non-trivial, it need be done only once 
for each language. 
ducing a flowchart is as simple as compiling a pro- 
gram. 

UFC as a Lexical Analyzer 

the input could somehow be broken into tokens, 
which w w e  presented to the automaton one at a 
time. 
while easier than parsing, designing a lexical 
analyzer is not trivial. 
signing a universal lexical analyzer is consider- 
ably more complex. 

assumptions about the domain of languages to be 
processed, and these assumption? place limits on 
the universe. For example, the analyzer starts 
with the basic concepts of blanks, end of file, 
end of line, strings o f  diaits, and strings of 
letters. Thus, a language where three blanks has 
a different meaning than four, or where "ABC" 
shculd b2 interpreted as two tokens, could not be 
handled by the UFC. 

To change from one language to another, 

A1 though preparing 

After the initial effort, pro- 

The discussion above made the assumption that 

This process is called lexical analysis, and 

Not surprisingly, de- 

For the UFC, it was necessary to make certain 

220 



Tho l e x i c a l  analyzer i s  t a i l o r e d  t o  a p a r t i c -  
i r la r  language by supplying l i s t s  o f  keywords, 
spec ia l  symbols, comnent d e l i m i t e r s ,  s t r i n g  del im- 

s i t e r s ,  and other const ructs .  Again, w r i t i n g  l i s t s  
i s  seen as a less  e r r o r  prone process than w r i t i n g  

L. actual  executable code. 

Along w i t h  f lowchar ts ,  the UFC produces a con- 
Althouqh cordance of i d e n t i f i e r s  i n  the program. 

on ly  mentioned i n  passing above, t h i s  i s  another 
fu l l - f ledged t r a n s l a t i o n  task, executed along w i t h  
the UFL parse described i n  the l a s t  sect ion.  

As one might expect, t h i s  requi res a complete 
s e t  of concordance t rans la t ions ,  which are i n  one- 
to-one correspondance w i t h  the BNF r u l e s  ( j u s t  as 
the UFL t rans la t ions  are) .  

BNF Rules Trans lat ions 

stmt: = I F  t e s t  then stmt e lse  - U - U U (16) 
stmt: = i d e n t  = expression A - U  (17) 
t e s t :  = iden t  r e l o p  i d e n t  1 - 1  (18) 

For example: 

Concordance 

Each concordance t r a n s l a t i o n  has one symbol fo r  each 
element on the r i g h t  hand s ide  of the BNF r u l e .  
The symbols are: 

- 
U a syn tac t ic  u n i t  o f  unspeci f ied type . 
A 
I 
L a local var iab le  
S the name o f  a subroutine 

a syn tac t ic  u n i t  conta in ing no i d e n t i f i e r s  

a var iab le  t h a t  i s  being assigned 
an i d e n t i f i e r  o f  unspeci f ied type 

L/ 
As the parse i s  proceeding, i d e n t i f i e r s  are f i l l e d  
i n t o  concordance templates, j u s t  as t e x t  i s  f i l l e d  
i n t o  UFL templates. 
ated f o r  each subroutine, and they a l l  share t h i s  
form: 

A concordance template i s  c re -  

LOCAL 

OTHER ASSIGNED 
IDENTI- VARS 
FIERS 

Because the UFC a l lows Q n l y  template construc- 
t i o n  as semantic act ion;  there i s  no symbol tab le,  
and hence there  i s  no way of determining the meaning 
o f  c e r t a i n  i d e n t i f i e r s .  For example, i n  some lan-  
guages "F(x)" could be e i t h e r  a f u n c t i o n  invocat ion  
o r  an ar ray  reference. In  such a case the  t d e n t f -  
f i e r  i n  question goes i n t o  the  "other  i d e n t i f i e r s "  
sec t ion  o f  the template. When a l l  the  templates 
have been f i l l e d  in, we can form the l i s t  of a l l  
subroutine names. and i n t e r s e c t  i t  w i t h  the  "other  .. 
i d e n t i f i e r s "  t o  ob ta in  the  l i s t  of procedure c a l l s  
fo r  each subroutine. S i m i l a r l y ,  g lobal  var iab les  
can be found by subt rac t ing  l o c a l  var iab les  and 
and procedure names form the union of l o c a l  var- 
i a b l e s  and other  i d e n t i f i e r s .  Other s e t  operations 
are performed t o  ob ta in  other  i n t e r e s t i n g  classes 

L 

O f  i dent i  f ie rs .  

V. Spec i f i ca t ion  and Implementation D e t a i l s  

Spec i f i ca t ion  

ca t ion  language. AXES i s  a formal no ta t ion  f o r  de- 
f i n i n g  systems. With AXES, one can def ine data types 
us ing abs t rac t  a lgebra ic  spec i f i ca t ion ,  funct ions 
which r e l a t e  members of these data types, and con- 
t r o l  s t ruc tu res  which r e l a t e  functions. The i n t e r -  
faces between these objects  can be au tomat ica l l y  
v e r i f i e d  s t a t i c a l l y .  

The UFC was designed us ing the AXES" s p e c i f i -  

The purpose o f  t h i s  pro jectwas t o  b u i l d  a 
un iversa l  f lowcharter, bu t  we were asked t o  apply 
AXES whenever possible, throughout a l l  phases of 
development. The p r o j e c t  was something o f  an ex- 
periment, and we were continuously observing our 
performance. 

experiment a rugged t e s t  f o r  AXES. 
f i c u l t  system t o  design, because no program l i k e  
the UFC had ever  been b u i l t  before, and the requ i re -  
ments were continuously changing. Several d i f f e r e n t  
engineers worked on the p r o j e c t .  Some were i n -  .i, 
volved throughout, o thers came on on ly  i n  the pro- 
g r a m i n g  stage. These programmers were handed AXES 
spec i f i ca t ions  w r i t t e n  by someone e lse,  and asked 
t o  come up w i t h  
face c o r r e c t l y  w i t h  o ther  modules. 

As d e l i v e r y  dates approached, some designers 
banicked and decided t o  s t a r t  implementing before 
c e r t a i n  data types and func t ions  were completely 
specif ied. Others stuck t o  the formal methodology 
and completed the s p e c i f i c a t i o n  process. We found 
t h a t  any e r r o r s  i n  implementation were i n  those 
functions where the s p e c i f i c a t i o n  was n o t  complete 
before implementation. 
AXES was o f  considerable he lp  i n  the design and 
s p e c i f i c a t i o n  of the UFC. 

Implementation 

There were a number o f  factors  which made t h i s  
I t  was a d i f -  

working code t h a t  would i n t e r -  

Therefore, we judged t h a t  

. .  

The UFC has been implemented as a PASCAL prb-  
gram of approximately 4000 l i n e s .  
a p a r t i t i o n  o f  a t  l e a s t  l O O K  bytes t o  run, and 
p l o t t i n g  a 1000 l i n e  program w i l l  r e q u i r e  about 
300K bytes, and run  i n  a few seconds. The program 
was developed on CDC mainframe machines, (bo th  
SCOPE and NOS operat ing systems) and was rehosted 
on an IBM-370 w i t h  less  than one day's work. This 
i s  a t r i b u t e  t o  the modu lar i t y  o f  the  program, bu t  
ma in ly  t o  the  p o r t a b i l i t y  of PASCAL. 

o r  by a l i n e p r i n t e r .  
p l o t t i n g  rou t ines ,  we chose t o  t r a n s l a t e  the UFL 
templates i n t o  a c m o n  in termediate form. This i s  
done by a recurs ive  descent parse. The UFL tem- 
p la te ,  which i s  a l i n e a r  s t r i n g ,  i s  de-nested i n t o  
an i n t e r n a l  t r e e  form which represents exac t ly  
what the  f lowchar ter  w i l l  l ook  l i k e ,  w i t h  two ex- 
cept ions.  the  exact s ize  o f  each box and connec- 
t i n g  l i n e  i s  n o t  spec i f ied,  and the  i n t e r n a l  form 
does n o t  account f o r  off-page connectors. 
two d e t a i l s  depend on the p l o t t i n g  medium and 
paper size, and are  handled b y ' t h e  r o u t i n e  t h a t  
does the t c t u a l  p l o t t i n g  ( e i t h e r  l i n e p r i n t e r  or 
Calcomp). 

The program needs 
~ 

Output can be produced by a CALCOMP p l o t t e r ,  
Because there  are  two d i s t i n c t  

These 

221 



. t ~ -  " 

s t r ings .  
mats. FORTRAN allows the pathological case of 
blanks within ident i f ie rs .  
a valid real  number in some languages, b u t  not 
others. 

handled by the few simple l i s t s  currently used as 
input t o  the lexical analyzer. 
needed i s  another s e t  of parse ru les ,  e i ther  i n  
LR(1) or regular expression form. This  would go a 
long ways toward making the UFC "more universal ," 
a t  the cost  of an increase in execution time. 

Some languages have column oriented for- 

The s t r ing "tlOEt5" i s  

This variety of s t ructure  cannot be adequately 

What i s  rea l ly  

The Flowcharter i s  currently s e t  up to pro- 

Because i t  i s  written i n  PASCAL, t h e  
cess programs written in e i ther  PASCAL or HALIS 
languages. 

i t s e l f ,  p rov id ing  automatic documentation. 

chart are shown in Appendix 11. 

. Flowcharter i s  therefore capable of flowchmting 

L 
A sample input program and result ing flow- 

VI Future Work 

- Concordance Structures 

verv simole manner. which does not account for  the 
The concordance information i s  gathered i n  a 

gr&t  divers i ty  of'programing languages. Problem 
areas include: 

1 )  D i s t i n g u i s h i n g  variables from procedures, 
par t icular ly  i n  languages t h a t  allow 
procedure-valued variables. 
Allowing non-standard scope rules ,  such 
as dynamic binding in LISP. 
Determining w h a t  variables a re  modified. 

( l i k e  P + REC. NAME(1). FIRST). 

2 )  

3) 
4 )  Recoqnizing compound names 

c 5) Ident i f ier  col l is ion problems. 

I t  i s  d i f f i c u l t  t o  define a comon kernel of, 
features t o  systematically obtain the necessary 
concordance infonat ion .  There are  many problem 
areas that a re  handled i n  a wide variety of ways i n  
different  languages. For example, using the ident- 
i f i e r  "F" inside function "F" would re fer  t o  a 
variable in FORTRAN, but would be a recursive cal l  
in P L / I .  I n  PASCAL, i t  would depend on the context 
(e .q . ,  i n  " F  = N * F ( N - I ) " ,  the f i r s t  F refers  to 
the value returned, and the second makes a recur- 
sive c a l l ) .  

Unfortunately, i t  appears that  problems 1 ike 
th i s  can only be handled by ad hoc routines t o  pro- 
cess each case. These routines must be e i ther  sup-  
plied by the user, or  pre-programed into the U F C ,  
in which case the user would supply a s e t  of f lags  
along w i t h  the BNF gramar t o  indicate which way 
t o  handle each problem area. 

Note that  these problems do n o t  a r i se  in the 
syntact ic  UFL translation. This i s  probably he- 
cause the theory o f  languages provides a sound 
mathematical base upon which a l l  programming lan- 
gauges build their  syntax. There i s  no such com- 
mon base for  the semantics of languages. 

Lexical Analysis 

dividual tokens begin and end. This i s  not always 
a good assumption, a s  programming lanauages have a 
wide variety of lexical rules.  For example, H A L / $  
i s  rare i n  t h a t  i t  allows c o m n t s  within character 

t 

The above discussion assumes we know where in- 

Parser Generator 

I n  implementing the UFC i t  was found t h a t  much 
of the debugging time was spent changing BNF rules 
and t ranslat ions,  not the actual UFC source code. 
A1 t h o u g h  experience is valuable, producing BNF 
rules  and tables is s t i l l  a d i f f i c u l t  operation. 
Even i f  a BNF specification i s  available f o r  a 
given language, i t  probably will have to be al tered 
for  use by the UFC. This i s  becau$e of the limited 
power of the lexical analyzer. 
ming language had these two rules:  

Suppose a program- 

array-reference : array-name (exp-l is t )  (24) 

fun-reference : fun-name (exp-l is t )  (25) 

There would be no ambiguity, because the lexical 
analyzer would refer  t o  the symbol table  t o  dis-  
tinguish between array-name and fun-name. 
would not be able to d i f fe ren t ia te  the two types 
of names, so rules (24) and (25) would cause a 
confl ic t .  They would have t o  be replaced by a 
number of rules t o  resolve the ambiguity. 

sidered something of a mystical a r t .  
most important area for  improving the UFC l i e s  not 
in.the Flowcharter i t s e l f ,  b u t  i n  developing a qood 
too l  f o r  generating parse tables ,  such as  the 
YRCC' '  program, which could interface with the UFC.  
The development of software tools seems t o  breed a 
need for  more software too ls ,  which indicates 
there i s  s t i l l  much work to be done. 

The UFC 

The a b i l i t y  t o  patch in this manner i s  con- 
Perhaps the 

Acknowledgement 
The Flowcharter project could n o t  have been com- 

pletedwithout the contrfbutions of R. Pankiewicz, 
D. Burns, and H .  McManus. 

References 
[l] Dahl, O.J., E.W. Dijkstra,  C.A.R. Hoare, 

Structured Programing, Academic Press, 
London, 1972. 

[2] Wirth, N., Systematic Proqramning: An Intro- w, Prentice Hall, 1973. 

[3] Straeter ,  T. ,  e t .  a1 . , "MUST - An Integrated 
System of Support Too ls  f o r  Reasearch Flight 
Software Engineering. A Collection of Tech- 
nical Papers, AIAA/NASA/IEEE/ACM Computers i n  
Aerospace Conference, Los Angeles, Nov. 1977. 

[4] HOS, Inc., Flowcharter Functional Description, 
July, 1979. 

[5] Hare1,D. and R. Pankiewicz, "A Universal Flow- 
charter,'' TR-11, HOS, Inc. ,  November 1976. 

222 



[61 McGowan, C.L., and J.R. Kel ly ,  Top-Down Struc- 
tu red  Programming Techni ues, Mason/Charter 
Publishers, Brown U d i t y ,  NY, 1975. 

[71 Bohm, C. and G. Jacopini,  Flow Diagrams, Tur ing 
Machines and Languages With Only Two Formation 
Rules, Corn. of the  ACM, 9;5 (1966) 366-371. 

[El Hamilton, M. and S .  Zeldin, Higher Order S o f t -  
ware - A Methodology f o r  Defining Software, 
I E E E  Transactions on Software Engineerinq, 
March 1976. 

[9] Aho, A . V . ,  ana J.D. Ullman, The Tneor o f  
Parsing, Trans lat ion,  and C o r n *  I :  
Parslnq, Prent ice-na l l ,  1972. 

[lo] Hamilton, M. and S .  Zeldin, "AXES Syntax 

[ l l ]  Johnson, S.C., YACC - Yet Another Compiler- 

Descr ip t ion,"  TR-4, HOS, Inc., December 1976. 

Compiler. Documents fo r  the  PUG/UNIX Tine 
Sharing System, B e l l  Laboratories, 1977. 

APPENDIX I 

The E igh t  Control Constructs. 

(1)  ELEMENTARY STATEMENT 

example: x:=x+l 

(2)  BLOCK STATEMENT 

example: begin 
al; a2; ... ; a 

end - 

.. . , .  . . . .I.. , 

(3) CONDITIONAL STATEMENT 

example: if P then a 
e lse  6 - 

IFlgl 
and s i m i l a r l y  

I -  
example: = D of 

E,: a l ;  % ' a ;...; E : an 2 '  2 n 
esac 

(4)  ITERATIVE STATEMENT-. 

example: while P 0 E g! - 
a 

f o r  x=y z & 6 g! 
I 

a 

( 5 )  CONCURRENT STATEMENT ( p a r a l l e l  processing) 

example: cobegin 
a, ; 

an ; 
coend __ 

223 



L 

'I. 

~~ 

(6 )  CHOICE STATEMENT (non-determin is t ic  choice) 

1 

- 

example: choose 
al ; 
a2 i 

6 ;  
end " - 

(7)  PROCEDURE STATEVENT 

example: Procedure P(x,y,z) 
al ; 
a2 ; 

End P 

(8 )  OFF-PAGE CONNECTION 

example: 

APPCNDIX I 1  -__ 
Sample I n p u t  and Output 

As an example we sketch the f lowchar t  o f  the  
fo l lowing prucedure statement: 

Procedure P(x,y); x:=xtl ;  & Q 

- i f  x<O then 
- w h i l e  x<O & x:?x+l a 

''., else - 
- i f  x= l  then 

cobegln 
. . .  . x:=xt1; 

y:=v-1; 

coend - 
else x:=l; fi - 

y:=xt l ;  fi 
z:=y; 

end - 

x:=x+I &I 
I 

F 
x:=l 

v 
y:=xt l  

I '  I 

224 


