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Introduction
Language interpretation involves mapping from a string
of words to a representation of an interpretation of those
words. The problem is to be able to combine evidence
from the lexicon, syntax, semantics, and pragmatics to
arrive at the best of the many possible interpretations.
Given the well-worn sentence “The box is in the pen,”
syntax may say that “pen” is a noun, while lexical knowl-
edge may say that “pen” most often means writing im-
plement, less often means a fenced enclosure, and very
rarely means a female swan. Semantics may say that the
object of “in” is often an enclosure, and pragmatics may
say that the topic is hiding small boxes of illegal drugs in-
side aquatic birds. Thus there is evidence for multiple in-
terpretations, and one needs some way to decide between
them.

In the past few years, some general approaches to inter-
pretation have been advanced within an abduction frame-
work. Charniak (1986) and Norvig (1987, 1989) are
two examples. In this paper we critically evaluate two
later models, those of Charniak and Goldman (1989) and
Hobbs, Stickel, Martin and Edwards (1988), These two
models add the important property of commensurability:
all types of evidence are represented in a common cur-
rency that can be compared and combined. While this is
an important advance, it appears a single measure is not
enough to account for all processing. We present other
problems for the abductive approach, and some tentative
solutions.

Cost Based Commensurability
Hobbs et al. (1988) view interpreting sentences as “pro-
viding the best explanation of why the sentences would
be true.” In this view a given sentence (or an entire text)
is translated by an ambiguity-preserving parser into a log-
ical form,

�
. Each conjunct in the logical form is an-

notated by a number indicating the cost, ��� , of assum-
ing the conjunct to be true. Conjuncts corresponding to
“new” information have a low cost of assumability, while
those corresponding to “given” information have a higher
cost, since to assume them is to fail to find the proper
connection to mutual knowledge. Each conjunct must be
either assumed or proved, using a rule or series of rules
from the knowledge base. Each rule also has cost factors
associated with it, and the proper interpretation, � , is the
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set of propositions with minimal cost that entails
�

.
As an example, consider again the sentence “The box

is in the pen.” The cost-annotated logical form (in a sim-
plified notation omitting quantifiers) is:���
	���
���
��������������! "��#$���������&%' "��
)(*#$���*+
where , �*- means the final interpretation must either as-
sume , for � 
 , or prove , , presumably for less. Consider
the proof rules:
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The first rule says that anything that is a writing-
pen is also a member of the class ‘pen’—things that
can be described with the word “pen”. The super-
scripted numbers are preference information: the first
rule says that

���! "��
�� ���'�
can be derived by assuming.0/ %21�%' �3O�4�5 "��
�� � 8 . Predicates of the form

�!1�<�TQ��
��
, as in

the second rule, denote conditions that are stated else-
where, or, for some natural kind terms, can not be fully
enumerated, but can only be assumed. They seem to be
related to the abnormal predicates,

GU	V��
��
used in circum-

scription theory (McCarthy 1986).
Below are two interpretations of

�
. The first just as-

sumes the entire logical form for $23, while the second
applies the rules and shares the

�5 )<�=���>5? / �@��#N� predicate
common to one of the definitions of

���5 "��#$�
and the defi-

nition of
%' "��
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to arrive at a $20.80 solution.	���
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The second
�5 )<�=J��>5? / �@��#$� gets a cost of $0 because

it has already been assumed. Let me stress that the de-
tails here are ours, and the authors may have a different
treatment of this example. For example, they do not dis-
cuss lexical ambiguity, although we believe we have been
faithful to the sense of their proposal.

This approach has several problems, as we see it:
(1) A single number is being used for two separate

measures: the cost of the assumptions and the quality
of the explanation. Hobbs et al. hint at this when they
discuss the “informativeness-correctness tradeoff.” Con-
sider their example “lube-oil alarm,” which gets trans-
lated as:=Z?4	�����%'=��2�����Q[\�EGP=�G / F]�JGU���Q[^�X � "�2�@(QG$���*_*�
where

 � 
means noun-noun compound. It is given a high

cost, $20, because failing to find the relation means fail-
ing to fully understand the referent. Intuitively this moti-
vation is valid. However, the

 � 
should have a very low
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cost of assumption, because there is very strong evidence
for it—the juxtaposition of two nouns in the input—so
there is little doubt that

 � 
holds. Thus we see

 � 
should

have two numbers associated with it: a low cost of as-
sumption, and a low quality of explanation. It should not
be surprising to see that two numbers are needed to search
for an explanation: even in ��� search one needs both a
cost function,

3
, and a heuristic function ��� .

The low quality of explanation is often the sign of a
need to search for a better explanation, but the need de-
pends on the task at hand. To diagnose a failure in the
compressor, it is useful to know that a “lube-oil alarm”
is an alarm that sounds when the lube-oil pressure is low,
and not, say, and alarm made out of lube-oil. However,
if the input was “Get me a box of lube-oil alarms from
the warehouse,” then it may not be necessary to further
explain the

 � 
relation.

�
Mayfield (1989) characterizes a

good explanation as being applicable to the needs of the
explanation’s user, grounded in what is already known,
and completely accounting for the input.

To put it another way, consider the situation where a
magician pulls a rabbit out of his hat. One possible ex-
planation is that the rabbit magically appeared in the hat.
This explanation is of very high quality—it perfectly ex-
plains the situation—but it has a prohibitive assumption
cost. An alternate explanation is that the magician some-
how used slight of hand to insert the rabbit in the hat
when the audience was distracted. This is of fairly low
quality—it fails to completely specify the situation—but
it has a much lower assumption cost. Whether this is a
sufficient explanation depends on the task. For a casual
observer it may will do, but for a rival magician trying to
steal the trick, a better explanation is needed.

(2) Translating, say, “the pen” as
���5 "��#N� ���'�

conflates
two issues: the final interpretation must find a referent,

#
,

and it must also disambiguate “pen”. It is true that defi-
nite noun phrases are often used to introduce new infor-
mation, and thus must be assumed, but an interpretation
that does not disambiguate “pen” is not just making an
assumption—rather it is failing altogether. One could ac-
comodate this problem by writing disambiguation rules
where the sum of the left-hand-side components is less
than 1. Thus, the system will always prefer to find some
interpretation for “pen”, rather than leaving it ambigu-
ous. In the case of vagueness rather than ambiguity, one
would probably want the left-hand-side to total greater
than 1. For example, in “He saw her duck”, the word
“duck” is ambiguous between a water fowl and a down-
ward movement, and any candidate solution should be
forced to decide between the two meanings. In contrast,
“he” is vague between a boy and a man, but it is not nec-
essary for a valid interpretation to make this choice. We
could model this with the rules:C@?4<��	��

��� ��
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Translating “lube-oil alarm” as ��������� �"!$#%�'&��(�)��� is suspect;
in the case of an alarm still in the box, there is not yet any par-
ticular oil for which it is the alarm.

However, this alone is not enough. Consider the sen-
tence “The pen is in the box.” By the rules above (and as-
suming a box is defined as an enclosure) we could derive
three interpretations, where either a writing implement,
a swan, or a fenced enclosure is inside a box. All three
would get a cost of $20.8. To choose among these three,
we would have to add knowledge about the likelihood of
these three things being in boxes, or add knowledge about
the relative frequencies of the three senses of “pen”. For
example, we could change the numbers as follows:
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�5 )<�=���>5? / �@��
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��76 +5� 9;�4�5 "��
��
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�� 6 * �B> . G@ "��
�� 6 Y 9M���5 "��
��

This has the effect of making the writing implement
sense slightly more likely than the fenced enclosure
sense, and much more likely than the female swan sense.
These rules maintain the desirable property of commen-
surability, but the numbers are now even more over-
loaded. Hobbs et al. already are giving the numbers re-
sponsibility for both “probabilities” and “semantic relat-
edness”, and now we have shown they must account for
word frequency information, and both the cost of assump-
tions and the quality of the explanation, the two measures
needed to control search. As our previous criticisms have
shown, a single number cannot represent even the cost
and quality of an explanation, much less these additional
factors.

Also note that to constrain search, it is important to
consider bottom-up clues, as in (Charniak 1986) and
(Norvig 1987). It would be a mistake to use the rules
given here in a strictly top-down manner, just because
they are reminiscent of Prolog rules.

(3) There is no notion of a “good” or “bad” interpre-
tation, except as an epiphenomenon of the interpretation
rules. In the “pen” example, the difference between fail-
ing completely to understand “pen” and properly disam-
biguating it to fenced-enclosure is less than 10% of the
total cost. The numbers in the rules could be changed
to increase this difference, but it would still be a quanti-
tative rather than qualitative difference. The problem is
that there are at least three reasons why we might want to
maintain ambiguity: because we are unsure of the cause
of an event, because it is so mundane as to not need an
explanation, and because it is so unbelievable that there
is no explanation. This theory does not distinguish these
cases. The theory has no provision for saying “I don’t
understand–the only interpretation I can find is a faulty
one,” and then looking harder for a better interpretation.

(4) There is no way to enforce a penalty worse than the
cost of an assumption. Consider the sentence “Mary said
she had killed herself.” The logical form is something
like:

>!GP#4��+ G / #�(*
�� �*+ �&
H�,�P%'=�= ��+ G / #D(-+ G / #N� ��+ W
Thus, for $6 we can just assume the logical form, without
noticing the inherent contradiction. Now let’s consider
some rules. We’ve collapsed most of the interesting parts
of these rules into

�51�<
predicates, leaving just the parts

2



relevant to the contradiction:GI=Z%��U�@� �4�76 � �H�51�< _ � � (*
��76 8L9 >!GP#4� � (Q
��
� GI=Z%��I�P� �4�76 [ �H�51�< + ��F (2�4�76 [ 9 �P%'=�=���F (2�4�

We’ve ignored time here, but the intent is that the alive
predicate is concerned with the time interval or situation
after the killing, including the time of the saying. Now,
an alternative interpretation of

�
is:GI=Z%��U�@��+ G / #$� � 6 + � � GI=Z%��I�P��+ G / #$� ��� 6 [�E�!1�< _ ��+ G / #D(Q
�� �*_ 6 �"�H�51�< + ��+ G / #D(-+ G / #N� ��� 6 [

Presumably there should be some penalty (finite or in-
finite) for deriving a contradiction, so this interpretation
will total more than $6. The problem is there is no way to
propagate this contradiction back up to the first interpre-
tation, where we just assumed both clauses. We would
like to penalize that interpretation, too, so that it costs
more than $6, but there is no way to do so.

A solution to this problem is to legislate that rather than
finding a solution to the logical form of a sentence,

�
, the

hearer must find a solution to the larger set of proposi-
tions,

� � , where
� � is derived from

�
by some process of

direct, “obvious” inference. We do not want the full de-
ductive closure from

�
, of course, but we want to allow

for some amount of automatic forward chaining from the
input.

(5) We would like to be able to go on and find alter-
native explanations, perhaps one where Mary is speaking
from the afterworld, or she is lying, or the speaker is ly-
ing. One could imagine rules for truthful and untruthful
saying, and such rules could be applied to Mary’s speech
act. However, since the goal of the interpretation process
is “providing the best explanation of why the sentences
would be true,” it does not seem that we could use the
rules to consider the possibility of the speaker being un-
truthful. The truth of the text is assumed by the model,
and the speaker is not modeled.

Probability Based Commensurability
Charniak and Goldman (1988) started out with a model
very similar to Hobbs et al., but became concerned with
the lack of theoretical grounding for the numbers in rules,
much as we were. Charniak and Goldman (1989a, 1989b)
switched to a system based strictly on probabilities in the
world, combined by Bayesian probability theory. Al-
though this solves some problems, other problems re-
main, and some new ones are introduced. For example:

(1) The approach in (1989a) is based on “events and
objects in the real world”. As the authors point out, it
cannot deal with texts involving modal verbs, nor can it
deal with speech acts by characters, or texts where the
speaker is uncooperative. So problem (4) above remains.

(2) Because the probabilities are based on events in the
real world, the basic system often failed to find stories as
coherent as they should be. For example, the text:

Jack got a rope. He killed himself.

suggests suicide by hanging when interpreted as a text,
but when interpreted as a partial report of events in the
world, that interpretation is less compelling. (After all,
the killing may have taken place years after the getting.)

It is only when the two events are taken as a part of a
coherent text that we assume they are related, tempo-
rally and causally. In Charniak and Goldman (1989a),
the coherence of stories is explained by a (probabilistic)
assumption of spatio-temporal locality between events
mentioned in adjacent sentences in the text. Thus the
story would be treated roughly as if it were:

Jack got a rope. Soon after, nearby, a male was found
to have killed himself.

The Bayesian networks compute a probability of hanging
of .3; this seems about right for the later story, but too low
for the original version.

Perhaps anticipating some of these problems, Charniak
and Goldman (1989b) introduce an alternate approach in-
volving a parameter,

�
, which denotes the probability

that two arbitrary things are the same. They claim that
in stories this parameter should be set higher than in real
life, and that this will lead, for example, to a high prob-
ability for the interpretation where the rope that Jack got
is the one he used for hanging. But

�
does a poor job of

capturing the notion of coherence. Consider:

John picked an integer from one to ten. Mary did so
too.

Here the probability that they picked the same number
should be .1, regardless of whether we are observing real
life or reading a story, and regardless of the value of E.

Charniak and Goldman (1989b) go on to propose a the-
ory of “mention” rather than a theory of coincidence, but
they do not develop this alternative.

(3) It seems that for many inferences, frequency in the
world does not play an important role at all. Consider the
text:

Jack wanted to tie a mattress on top of his car. He also
felt like killing himself. He got some rope.

Now, the probability of getting a rope to hang oneself
given suicidal feelings must be quite low, maybe .001,
while the probability of getting a rope for tying given
a desire to secure a mattress is much higher, maybe .5.
Thus the Charniak-Goldman model would strongly pre-
fer the latter interpretation. With the “mention” theory,
it would like both interpretations. Yet a sample of in-
formants mostly found the text confusing–they reported
finding both interpretations, and were unable to choose
between them. It would be useful to find a better char-
acterization of when frequencies in the world are useful,
and when they appear to be ignored in favor of some more
discrete notion of “reasonable connection.”

Problems With Both Models
Neither model is completely explicit on how the final ex-
planation is constructed, or on what to do with the fi-
nal explanation. In a sense, Hobbs et al.’s system is
like a justification-based truth-maintenance system that
searches for a single consistent state, possibly explor-
ing other higher-cost states along the way. Charniak
and Goldman’s system is like an assumption-based truth-
maintenance system (ATMS) that keeps track of all pos-
sible worlds in one grand model, but needs a separate in-
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terpretation process to extract consistent solutions. Thus,
the system does not really do interpretation to the level
that could lead to decisions. Rather, it provides evidence
upon which decisions can be based.

Both approaches are problematic. Imagine the situa-
tion where a hearer is driving a car, and is about to en-
ter an intersection when a traffic officer says “don’t -
stop”. The hearer derives two possible interpretations,
one corresponding to “Don’t stop.” and the other corre-
sponding to “Don’t. Stop.” Hobbs et al.’s system would
assign costs and chose the one with the lower cost, no
matter how slight the difference. A more prudent course
of action might be to recognize the ambiguity, and seek
more information to decide what was intended. Charniak
and Goldman’s system would assign probabilities to each
proposition, but would offer no assistance as to what to
do. However, if the model were extended from Bayesian
networks to influence diagrams, then a decision could be
made, and it would also be possible to direct search to the
important parts of the network.

Deliberate ambiguity is also a problematic area. In a
pun, for example, the speaker intends that the hearer re-
cover two distinct interpretations. Such subtlety would
be lost on the models discussed here. This issue is
adj(ri,[ma,ct]). j(nhh in Norvig (1988).

A number of arguments show that strict maximization
of probability (or minimization of cost) is a bad idea.
First, as we have seen, we must sometimes admit that
an input is truly ambiguous (intentionally or unintention-
ally).

Second, there is the problem of computational com-
plexity. Algorithms that guarantee a maximal solution
take exponential time for the models discussed here.
Thus, a large-scale system will be forced to make some
sort of approximation, using a less costly algorithm. This
is particularly true because we desire an on-line system—
one that computes a partial solution after each word is
read, and updates the solution in a bounded period of
time.

Third, communication by language has the property
that “the speaker is always right”. In chess, if I play opti-
mally and my opponent plays sub-optimally, I win. But in
language understanding, if I abduce the “optimal” inter-
pretation when the speaker had something else in mind,
then we have failed to communicate, and I in effect lose.
Put another way, there is a clear “evolutionary” advan-
tage for optimal chess strategies, but once language has
evolved to the point where communication is possible,
there is no point for a hearer to try to change his interpre-
tation strategy to derive what an optimal speaker would
have uttered to an optimal hearer–because there are no
such optimal speakers. Indeed, there is an advantage for
communication strategies that can be computed quickly,
allowing the participants to spend time on other tasks.
By the second point above, such a strategy must be sub-
optimal.

Earlier we said that Charniak and Goldman (1989b) in-
troduced the parameter E to account for the coherence of
stories. But they also provide a brief sketch of another ac-
count, one where, in addition to deriving probabilities of

events in the world, we also consider the probability that
the speaker would mention a particular entity at all. Such
a theory, if worked out, could account for the difficulty in
processing speech acts that we have shown both models
suffer from.

However, a theory of “mention” alone is not enough.
We also need theories of representing, intending, believ-
ing, directly implying, predicting, and acting. The chain
of reasoning and acting includes at least the following:

H attends to utterance � by speaker S
H infers “S said � to H”
H infers “

�
represents � ”

H infers “
�

directly implies
� � ”

H infers “S intended H to believe S believes
� � ”

H infers “S intended H to believe
� � ”

H believes a portion of
� � compatible with H’s beliefs

H forms predictions about S’s future speech acts
H acts accordingly

This still only covers the case of successful, cooperative
communication, and it leaves out some steps. A success-
ful model should be able to deal with all these rules, when
necessary. However, the successful model should also be
able to quickly bypass the rules in the default case. We
believe that the coherence of stories stems primarily from
the speaker presenting evidence to the hearer in a fashion
that will lead the hearer to focus his attention on the evi-
dence, and thereby derive the inferences intended by the
speaker. Communication is possible because it consists
primarily of building a single shared explanation. It is
only in unusual cases where there are multiple possibili-
ties that must be weighed against each other and carried
forth.

Both models seem to have difficulty distinguishing am-
biguity from multiple explanations. This makes a differ-
ence in cases like the following:

John was wondering about lunch when it started to
rain. He ran into a restaurant.

Here there are two reasons why John would enter the
restaurant–to satisfy hunger and to avoid the rain. In
other words there are two explanations, say, � 9��

and� 9��
, and we would like to combine them to yield

� ��� 9��
. As we understand it, Hobbs et al. appear

to use “exclusive or” in all cases, so they would not find
this explanation. Charniak and Goldman allow compet-
ing explanations to be joined by an “or” node, but require
competing lexical senses to be joined by “exclusive or”
nodes. So they would find ��� � 9��

. In other words,
they would find both explanations probable, which is not
quite the same thing as finding the conjunction probable.
Now consider:

He’s a real sweetheart.

This has a straight and an ironic reading:
> . ���51 � �!G / 1���
��

and � > . ���51 � �!G / 1���
�� . The disjunction is a tautology
and the conjunction is a contradiction, so in this case
the Hobbs approach of keeping the alternatives separate
seems better than allowing their disjunction. Finally, con-
sider:

Mary was herding water fowl while dodging hostile
gunfire. John saw her duck.
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Here we do not want to combine two the interpretations
into a single interpretation. If we amend a model to allow
multiple explanations, we must be careful that we don’t
go too far.

Conclusions
Abduction is a good model for language interpretation,
and commensurability is a vital component of an abduc-
tion system. But the models discussed here have serious
limitations, due to technical problems, and due to a fail-
ure to embrace language as a complex activity, involv-
ing actions, goals, beliefs, inferences, predictions, and
the like. We don’t believe that knowledge of probabil-
ity in the world, plus a few general principles (such as

�
)

can lead to a viable theory of languiage use. This “com-
plicated” side of language has been studied in depth for
over a decade (a list very similar to our chain of reason-
ing and acting appears in Morgan (1978)), so our task is
clear: to marry these pre-theoretic “complicated” notions
with the formal apparatus of commensurable abductive
interpretation schemes.
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