
Inference In Text Understanding

Peter Norvig
Computer Science Dept., Evans Hall

University of California, Berkeley
Berkeley CA 94720

This work was supported in part by National Science Foundation grant IST-8208602 and by
Defense Advanced Research Projects Agency contract N00039-84-C-0089.

Abstract
The problem of deciding what was implied by a written text, of ‘‘reading between the
lines’’ is the problem of inference. To extract proper inferences from a text requires a
great deal of general knowledge on the part of the reader. Past approaches have often
postulated an algorithm tuned to process a particular kind of knowledge structure (such as
a script, or a plan). An alternative, unified approach is proposed. The algorithm recog-
nizes six very general classes of inference, classes that are not dependent on individual
knowledge structures, but instead rely on patterns of connectivity between concepts. The
complexity has been effectively shifted from the algorithm to the knowledge base; new
kinds of knowledge structures can be added without modifying the algorithm.

1. The Problem of Inferencing

The reader of a text is faced with a formidable task: recognizing the individual words of the text,
deciding how they are structured into sentences, determining the explicit meaning of each sen-
tence, and also making inferences about the likely implicit meaning of each sentence, and the im-
plicit connections between sentences. An inference is defined to be any assertion which the read-
er comes to believe to be true as a result of reading the text, but which was not previously be-
lieved by the reader, and was not stated explicitly in the text. Note that inferences need not fol-
low logically or necessarily from the text; the reader can jump to conclusions that seem likely but
are not 100% certain.

In the past, there have been a variety of programs that handled inferences at the sentential and
inter-sentential level. However, there has been a tendency to create new algorithms every time a
new knowledge structure is proposed. For example, from the Yale school we see one program,
MARGIE, [Sch73d] that handled single-sentence inferences. Another program, SAM [Cul78]
was introduced to process stories referring to scripts, and yet another, PAM, [Wil78] dealt with
plan/goal interactions. But in going from one program to the next a new algorithm always re-
placed the old one; it was not possible to incorporate previous results except by re-implementing
them in the new formalism. Even individual researchers have been prone to introduce a series of
distinct systems. Thus, we see Charniak going from demon-based [Cha72] to frame-based
[Cha78b] to marker-passer based [Cha86] systems. Granger has gone from a plan/goal based
system [Gra80b] to a spreading activation model [Gra84b]. One could say that the researchers
gained experience, but the programs did not. Both these researchers ended up with systems that
are similar to the one outlined here.

2. The Inferencing Algorithm

I hav e implemented an inferencing algorithm in a program called FAUSTUS (Fact Activated
Unified STory Understanding System). A preliminary version of this system was described in
[Nor83], and a complete account is given in [Nor86]. The program is designed to handle a vari-
ety of texts, and to handle new subject matter by adding new knowledge rather than by changing
the algorithm or adding new inference rules. Thus, the algorithm must work at a very general
level. The algorithm makes use of six inference classes which are described in terms of the prim-
itives of this language. The algorithm itself can be broken into steps as follows:

Step 0: Construct a knowledge base defining general concepts like actions, locations, and phys-
ical objects, as well as specific concepts like bicycles and tax deductions. The same knowledge
base is applied to all texts, whereas steps 1-5 apply to an individual text.

Step 1: Construct a semantic representation of the next piece of the input text. Various con-
ceptual analyzers (parsers) have been used for this, but the process will not be addressed in this
paper. Occasionally the resulting representation is vague, and FAUSTUS resolves some ambigu-
ities in the input using two kinds of non-marker-passing inferences.

Step 2: Pass markers from each concept in the semantic representation of the input text to adja-
cent nodes, following along links in the semantic net. Markers start out with a given amount of
marker energy, and are spread recursively through the network, spawning new markers with less
energy, and stopping when the energy value hits zero. (Each of the primitive link types in KODI-
AK has an energy cost associated with it.) Each marker points back to the marker that spawned
it, so we can always trace the marker path from a given marker back to the original concept that
initiated marker passing.

Step 3: Suggest Inferences based on marker collisions. When two or more markers are passed
to the same concept, a marker collision is said to have occurred. For each collision, look at the
sequence of primitive link types along which markers were passed. This is called the path shape.
If it matches one of six pre-defined path shapes then an inference is suggested. Suggestions are
kept in a list called the agenda, rather than being evaluated immediately. Note that inferences are
suggested solely on the basis of primitive link types, and are independent of the actual concepts
mentioned in the text. The power of the algorithm comes from defining the right set of pre-de-
fined path shapes (and associated suggestions).

Step 4: Evaluate potential inferences on the agenda. The result can be either making the sug-
gested inference, rejecting it, or deferring the decision by keeping the suggestion on the agenda.
If there is explicit contradictory evidence, an inference can be rejected immediately. If there are
multiple potential inferences competing with one another, as when there are several possible ref-
erents for a pronoun, then if none of them is more plausible than the others, the decision is de-
ferred. If there is no reason to reject or defer, then the suggested inference is accepted.

Step 5: Repeat steps 1-4 for each piece of the text.

Step 6: At the end of the text there may be some suggested inferences remaining on the
agenda. Evaluate them to see if they lead to any more inferences.

The knowledge base is modeled in the KODIAK representation language, a semantic net-
based formalism with a fixed set of well-defined primitive links. We present a simplified
version for expository reasons; see [Wil86] for more details. KODIAK resembles KL-ONE
[Bra85], and continues the renaissance of spreading activation approaches spurred by
[Fah79].

3. Describing Inference Classes by Path Shapes

FA USTUS has six marker-passing inference classes. These classes will be more meaningful af-
ter examples are provided below, but I want to emphasize their formal definition in terms of path
shapes. Each inference class is characterized in terms of the shapes of the two path-halves which
lead to the marker collision. There are three path-half shapes, which are defined in terms of
primitive link types: H for hierarchical links between a concept and one of its super-categories, S
for links between a concept and one of its ‘‘slots’’ or relations, and R for a link indicating a range
restriction on a relation. A * marks indefinite repetition, and a -1 marks traversal of an inverse
link.

Inference Classes Path 1 Path 2
Elaboration Ref Elaboration
Double Elaboration Elaboration Elaboration
Reference Resolution Ref Ref
Concretion Elaboration Filler
Relation Concretion Elaboration Filler
View Application Constraint View

Path Name Path Shape
Elaboration origin H* S R H* collision
Ref origin H* collision
Filler origin S-1 S H* collision
Constraint origin H* R-1 collision
View origin H* V H* R-1 collision

Non-Marker-Passing Inference Classes
Relation Classification
Relation Constraint

For example, an elaboration collision can occur at concept X when one marker path starts at Y

and goes up any number of H links to X, and another marker path starts at Z and goes up some H
links, out across an S link to a slot, then along an R link to the category the filler of that slot must
be, and then possibly along H links to X.

Given a collision, FAUSTUS first looks at the shape of the two path-halves. If either shape is
not one of the three named shapes, then no inference can come of the collision. Even if both
halves are named shapes, a suggestion is made only if the halves combine to one of the six infer-
ence classes, and the suggestion is accepted only if certain inference-class-specific criteria are
met.

The rest of the paper will be devoted to showing a range of examples, and demonstrating that
the general inference classes used by FAUSTUS can duplicate inferences made by various spe-
cial-purpose algorithms.

4. Early Marker-Passing Based Inferences

One of the first inferencing programs was the Teachable Language Comprehender, or TLC,
[Qui69] which took as input single noun phrases or simple sentences, and related them to what
was already stored in semantic memory. For example, given the input ‘‘lawyer for the client,’’
the program could output ‘‘at this point we are discussing a lawyer who is employed by a client
who is represented or advised by this lawyer in a legal matter.’’ The examples given in [Qui69]
show an ability to find the main relation between two concepts, but not to go beyond that. One
problem with TLC was that it ignores the grammatical relations between concepts until the last
moment, when it applies ‘‘form tests’’ to rule out certain inferences. For the purposes of generat-
ing inferences, TLC treats the input as if it had been just ‘‘Lawyer. Client’’. Quillian suggests
this could lead to a potential problem. He presents the following examples:

lawyer for the enemy enemy of the lawyer
lawyer for the wife wife of the lawyer
lawyer for the client client of the lawyer

In all the examples on the left hand side, the lawyer is employed by someone. However, among
the examples on the right hand side, only the last should include the employment relation as part
of the interpretation. While he suggests a solution in general terms, Quillian admits that TLC as
it stood could not handle these examples.

FA USTUS has a better way of combining information from syntax and semantics. Both TLC
and FAUSTUS suggest inferences by spreading markers from components of the input, and look-
ing for collisions. The difference is that TLC used syntactic relations only as a filter to eliminate
certain suggestions, while FAUSTUS incorporates the meaning of these relations into the repre-
sentation before spreading markers. Even vague relations denoted by for and of are represented
as full-fledged concepts, and are the source of marker-passing.

Trace output #1 below shows that FAUSTUS can find a connection between lawyer and client
without the for relation, just like TLC. Markers originating at the representations of ‘‘lawyer’’
and ‘‘client’’ collide at the concept employing-event. The shape of the marker path indicates
that this is a double elaboration path, and the suggested inference, that the lawyer employs the
client, is eventually accepted.

In output #2 a non-marker-passing inference first classifies the for as an employed-by relation,
because a lawyer is defined as a professional-service-provider, which includes an employed-by
slot as a specialization of the for slot. This classification means the enemy must be classified as
an employer. Once this is done, FAUSTUS can suggest the employing-event that mediates be-
tween an employee and an employer, just as it did in #1. Finally, in #3, the of is left with the
vague interpretation related-to, so the enemy does not get classified as an employer, and no em-
ployment event is suggested.

Quillian #1

[1] Lawyer.

Rep: (LAWYER)

[2] Client.

Rep: (CLIENT)

Inferring: there is a EMPLOYING-EVENT such that
the CLIENT is the EMPLOY-ER of it and
the LAWYER is the EMPLOY-EE of it.
This is a DOUBLE-ELABORATION inference.

Quillian #2

[1] lawyer for the enemy

Rep: (LAWYER (FOR = THE ENEMY))

Inferring: a FOR of the LAWYER is the EMPLOYED-BY
This is a RELATION-CLASSIFICATION inference.

Inferring: there is a EMPLOYING-EVENT such that
the ENEMY is the EMPLOY-ER of it and
the LAWYER is the EMPLOY-EE of it.
This is a DOUBLE-ELABORATION inference.

Quillian #3

[1] enemy of the lawyer

Rep: (ENEMY (OF = THE LAWYER))

Inferring: a OF of the ENEMY is
probably a RELATED-TO
This is a RELATION-CONCRETION inference.

It should be noted that [Cha86] has a marker-passing mechanism that also improves on Quillian,
and is in many ways similar to FAUSTUS. Charniak integrates parsing, while FAUSTUS does
not, but FAUSTUS has a larger knowledge base (about 1000 concepts compared to about 75).
Another key difference is that Charniak uses marker strength to make decisions, while FAUS-
TUS only uses markers to find suggestions, and evaluates them with other means.

5. Script Based Inferences

The SAM (Script Applier Mechanism) program [Cul78] was built to account for stories that re-
fer to stereotypical situations, such as eating at a restaurant. A new algorithm was needed be-
cause Conceptual Dependency couldn’t represent scripts directly. In KODIAK, there are no arbi-
trary distinctions between ‘‘primitive acts’’ and complex events, so eating-at-a-restaurant is
just another event, much like eating or walking, except that it involves multiple agents and mul-
tiple sub-steps, with relations between the steps. Consider the following example:

The Waiter

[1] John was eating at a restaurant with Mary.

Rep: (EATING (ACTOR = JOHN)(SETTING = A RESTAURANT)
(WITH = MARY))

Inferring: a WITH of the EATING is probably
the ACCOMPANIER
because Mary fits it best.
This is a RELATION-CONCRETION inference.

Inferring: the EATING is a EAT-AT -RESTAURANT.
This is a CONCRETION inference.

[2] The waiter spilled soup all over her.

Rep: (SPILLING (ACTOR = THE WAITER)(PATIENT = SOUP)
(RECIPIENT = HER))

Inferring: there is a EAT -AT -RESTAURANT such that
the SOUP is the FOOD-ROLE of it and
the RESTAURANT is the SETTING of it.

This is a DOUBLE-ELABORATION inference.

Inferring: there is a EATING such that
the SOUP is the EATEN of it and
it is the PURPOSE of the RESTAURANT.
This is a DOUBLE-ELABORATION inference.

Inferring: there is a EAT -AT -RESTAURANT such that
the WAITER is the WAITER-ROLE of it and
the SOUP is the FOOD-ROLE of it.
This is a DOUBLE-ELABORATION inference.

The set of inferences seems reasonable, but it is instructive to contrast them with the infer-
ences SAM would have made. SAM would first notice the word restaurant and fetch the restau-
rant script. From there it would match the script against the input, filling in all possible informa-
tion about restaurants with either an input or a default value, and ignoring input that didn’t match
the script. FA USTUS does not mark words like restaurant or waiter as keywords. Instead it is
able to use information associated with these words only when appropriate, to find connections
to events in the text. Thus, FA USTUS could handle John walked past a restaurant without infer-
ring that he ordered, ate, and paid for a meal.

6. Plan Based Inferences

In the previous section we saw that FAUSTUS was able to make what have been called ‘‘script-
based inferences’’ without any explicit script-processing control structure. This was enabled par-
tially by adding causal information to the representation of script-like events. The theory of
plans and goals as they relate to story understanding, specifically the work of Wilensky [Wil78],
was also an attempt to use causal information to understand stories that could not be compre-
hended using scripts alone. Consider story (4):

(4a) John was lost.
(4b) He pulled over to a farmer by the side of the road.
(4c) He asked him where he was.

Wilensky’s PAM program processed this story as follows: from (4a) it infers that John will have
the goal of knowing where he is. From that it infers he is trying to go somewhere, and that going
somewhere is often instrumental to doing something there. From (4b) PAM infers that John
wanted to be near the farmer, because he wanted to use the farmer for some purpose. Finally
(4c) is processed. It is recognized that asking is a plan for knowing, and since it is known that
John has the goal of knowing where he is, there is a match, and (4c) is explained. As a side ef-
fect of matching, the three pronouns in (4c) are disambiguated. Besides resolving the pronouns,
the two key inferences are that John has the goal of finding out where he is, and that asking the
farmer is a plan to achieve that goal.

In FAUSTUS, we can arrive at the same interpretation of the story by a very different method.
(4a) does not generate any expectations, as it would in PAM, and FAUSTUS cannot find a con-
nection between (4a) and (4b), although it does resolve the pronominal reference, because John
is the only possible candidate. Finally, in (4c), FAUSTUS makes the two main inferences. The
program recognizes that being near the farmer is related to asking him a question by a precondi-
tion relation (and resolves the pronominal references while making this connection). FA USTUS
could find this connection because both the asking and the being-near are explicit inputs. The
other connection is a little trickier. The goal of knowing where one is was not an explicit input,
but ‘‘where he was’’ is part of (4c), and there is a collision between paths starting from the repre-
sentation of that phrase and another path starting from the asking that lead to the creation of the
plan-for between John’s asking where he is and his hypothetical knowing where he is.

The important conclusion, as far as FAUSTUS is concerned, is that both script- and goal-based
processing can be reproduced by a system that has no explicit processing mechanism aimed at
one type of story or another, but just looks for connections in the input as they relate to what is
known in memory. For both scripts and goals, this involves defining situations largely in terms
of their causal structure.

7. Coherence Relation Based Inferences

In this section we turn to inferences based on coherence relations, as exemplified by this example
proposed by Kay and Fillmore [Kay81]:

(5) A hiker bought a pair of boots from a cobbler.

From the definition of buying one could infer that the hiker now owns the boots that previous-
ly belonged to the cobbler and the cobbler now has some money that previously belonged to the
hiker. Howev er, a more complete understanding of (5) should include the inference that the
transaction probably took place in the cobbler’s store, and that the hiker will probably use the
boots in his avocation, rather than, say, giv e them as a gift to his sister. The first of these can be
derived from concretion inferences once we have described what goes on at a shoe store. The
problem is that we want to describe this in a neutral manner − to describe not ‘‘buying at a shoe
store’’ which would be useless for ‘‘selling at a shoe store’’ or ‘‘paying for goods at a shoe store’’
but rather the general ‘‘shoe store transaction.’’ This is done by using the commercial-event ab-
solute, which dominates store-transaction on the one hand, and buying, selling and paying on
the other. Each of these last three is also dominated by action. Assertions are made to indicate
that the buyer of buying is both the actor of the action and the merchant of the commercial-
ev ent. The next step is to define shoe-store-transaction as a kind of store-transaction where
the merchandise is constrained to be shoes. With that done, we get the following:

The Cobbler and the Hiker

[1] A cobbler sold a pair of boots to a hiker.

Rep: (SELLING (ACTOR = A COBBLER)(PATIENT = A BOOT)
(RECIPIENT = A HIKER))

Inferring: the SELLING is a SHOE-STORE-TRANSACTION.
This is a CONCRETION inference.

Inferring: there is a WALKING such that
it is the PURPOSE of the BOOT and
the HIKER is the OBJECT-MOVED of it.
This is a DOUBLE-ELABORATION inference.

The program concludes that a selling involving shoes is a shoe store transaction, and although it
was not printed, this means that it takes place in a shoe store, and the seller is an employee of the
store. The second inference is based on a collision at the concept walking. The purpose of boots
is walking, and the walking is to be done by the hiker, because that’s what they do. Note that the
representation is not sophisticated enough to distinguish between actual events and potential fu-
ture events like this one.

8. Unexpected Inferences

One hallmark of an AI program is to generate output that was not expected by the program’s de-
veloper. The following text shows an example of this:

The President

[1] The president discussed Nicaragua.

Rep: (DISCUSSING (ACTOR = THE PRESIDENT)
(CONTENT = NICARAGUA))

[2] He spoke for an hour.

Rep: (TALKING (ACTOR = HE) (DURATION = AN HOUR))

Inferring: ‘HE’ must be a PERSON,
because it is the TALKER
This is a RELATION-CONSTRAINT inference.

Inferring: ‘HE’ refers to the PRESIDENT.
This is a REFERENCE inference.

Inferring: the NICARAGUA is a COUNTRY such that
it is the HABITAT of ‘HE’ and
it is the COUNTRY of the PRESIDENT.

This is a DOUBLE-ELABORATION inference.

Inferring: the TALKING refers to the DISCUSSING.
This is a REFERENCE inference.

This example was meant to illustrate action/action co-reference. The talking in the second sen-
tence refers to the same event as the discussing in the first sentence, but neither event is explicit-
ly marked as definite or indefinite. FA USTUS is able to make the inference that the two actions
are co-referential, using the same mechanism that works for pronouns. The idea of treating ac-
tions under a theory of reference is discussed in [Loc80]. FA USTUS correctly finds the corefer-
ence between the two actions, and infers that ‘he’ refers to the president.

But FAUSTUS infers that Nicaragua is the president’s home or habitat and is the country of
his constituency. This makes a certain amount of sense, since presidents must have such things,
and Nicaragua is the only country mentioned. Of course, this was unexpected; we interpret the
text as referring to the president of the United States because we are living in the U.S., and our
president is a salient figure. Given FAUSTUS’s lack of context, the inference is quite reasonable.

9. Conclusion

We hav e shown that a general marker-passing algorithm with a small number of inference classes
can process a wide variety of texts. FAUSTUS shifts the complexity from the algorithm to the
knowledge base to handle examples that other systems could do only by introducing specialized
algorithms.

References

