
Peter Norvig, Harlequin, Inc. 1 Object World, May 5, 1996

Design Patterns in
Dynamic Programming

Peter Norvig

Chief Designer, Adaptive Systems
Harlequin Inc.

Peter Norvig, Harlequin, Inc. 2 Object World, May 5, 1996

Outline
  (1) What Are Design Patterns?

 Templates that describe design alternatives
  (2) Design Patterns in Dynamic Languages

 How to do classic patterns in dynamic languages
 Escape from language limitations

  (3) New Dynamic Language Patterns
 New patterns suggested by dynamic languages

  (4) Design Strategies
 Thinking about all of software development

Peter Norvig, Harlequin, Inc. 3 Object World, May 5, 1996

(1) What Are Design Patterns?
  Problem: Represent a Rubik’s Cube as:

  Cubies[3,3,3] ?
  Faces[6,3,3] ?
  Faces[54] ?

  Design Strategies:
  Most important things first (faces, moves)
  Reuse standard tools (1D), math (permutations)

  Design Patterns:
  Model/View
  Extension Language (define composed moves)

Peter Norvig, Harlequin, Inc. 4 Object World, May 5, 1996

What Are Design Patterns?
  Descriptions of what experienced designers know

(that isn’t written down in the Language Manual)
  Hints/reminders for choosing classes and methods
  Higher-order abstractions for program organization
  To discuss, weigh and record design tradeoffs
  To avoid limitations of implementation language

(Design Strategies, on the other hand, are what guide
you to certain patterns, and certain implementations.
They are more like proverbs than like templates.)

Peter Norvig, Harlequin, Inc. 5 Object World, May 5, 1996

What’s in a Pattern?
  Pattern Name
  Intent / Purpose
  Also Known As / Aliases
  Motivation / Context
  Applicability / Problem
  Solution
  Structure

  Participants
  Collaborations
  Consequences/Constraints
  Implementation
  Sample Code
  Known Uses
  Related Patterns/Compare

From Design Patterns and
Pattern Languages of Program Design

Peter Norvig, Harlequin, Inc. 6 Object World, May 5, 1996

Pattern: Abstract Factory
  Intent: Create related objects without specifying

concrete class at point of creation
  Motivation: Portable GUI (Motif, Windows, ...)

Create a ScrollBar, get a MotifScrollBar;
Also for SmallBlueWindow, MyAppWindow

  Participants: AbstractFactory, ConcreteFactory,
AbstractProduct, ConcreteProduct, Client

  Sample Code: class MotifFactory ... ;
factory = new MotifFactory;
...
CreateWindow(factory, x, y);

Peter Norvig, Harlequin, Inc. 7 Object World, May 5, 1996

Level of Implementation of a Pattern
  Invisible

So much a part of language that you don’t notice
(e.g. when class replaced all uses of struct in C
++, no more “Encapsulated Class” pattern)

  Informal
Design pattern in prose; refer to by name, but
Must be implemented from scratch for each use

  Formal
Implement pattern itself within the language
Instantiate/call it for each use
Usually implemented with macros

Peter Norvig, Harlequin, Inc. 8 Object World, May 5, 1996

Sources on Design Patterns
  Design Patterns

Gamma, Helm, Johnson & Vlissides, 1995
  Pattern Languages of Program Design

Coplien & Schmidt, 1995
  Advanced C++ Programming Styles and Idioms

Coplien, 1992
  Object Models

Coad, 1995
  A Pattern Language

Alexander, 1979

Peter Norvig, Harlequin, Inc. 9 Object World, May 5, 1996

(2) Design Patterns in Dynamic Languages

  Dynamic Languages have fewer language limitations
Less need for bookkeeping objects and classes
Less need to get around class-restricted design

  Study of the Design Patterns book:
16 of 23 patterns have qualitatively simpler
implementation in Lisp or Dylan than in C++
for at least some uses of each pattern

  Dynamic Languages encourage new designs
We will see some in Part (3)

Peter Norvig, Harlequin, Inc. 10 Object World, May 5, 1996

Design Patterns in Dylan or Lisp
16 of 23 patterns are either invisible or simpler, due to:
  First-class types (6): Abstract-Factory,
Flyweight, Factory-Method, State, Proxy,
Chain-Of-Responsibility

  First-class functions (4): Command, Strategy,
Template-Method, Visitor

  Macros (2): Interpreter, Iterator
  Method Combination (2): Mediator, Observer
  Multimethods (1): Builder
  Modules (1): Facade

Peter Norvig, Harlequin, Inc. 11 Object World, May 5, 1996

First-Class Dynamic Types
  First-Class: can be used and operated on where any

other value or object can be used
  Types or Classes are objects at run-time

(not just at compile-time)
  A variable can have a type as a value
  A type or class can be created/modified at run-time
  There are functions to manipulate types/classes

(and expressions to create types without names)
  No need to build extra dynamic objects just to hold

types, because the type objects themselves will do

Peter Norvig, Harlequin, Inc. 12 Object World, May 5, 1996

Dynamic Pattern: Abstract Factory
  Types are runtime objects; serve as factories

(No need for factory/product dual hierarchy)
  No need for special code; use is invisible:
window-type := <motif-window>;
...
make(window-type, x, y);

  Still might want factory-like objects to bundle classes
(window, scroll-bar, menu, border, tool-bar, ...)

  Works in Lisp or Dylan or Smalltalk or ...
  Dylan classes explicitly abstract or concrete

Peter Norvig, Harlequin, Inc. 13 Object World, May 5, 1996

Pattern: Abstract Factory
  Static version requires dual hierarchy of classes:
GUIFactory Window
NTFactory NTWindow
MacOSFactory MacOSWindow
XFactory XWindow
MotifFactory MotifWindow

 with objects instantiated on both sides
  Dynamic version needs only the Window classes

The classes themselves serve as factories
This works because classes are first-class values
We can say make(c)

Peter Norvig, Harlequin, Inc. 14 Object World, May 5, 1996

First-Class Dynamic Functions
  Functions are objects too
  Functions are composed of methods
  There are operations on functions (compose, conjoin)
  Code is organized around functions as well as classes
  Function closures capture local state variables

(Objects are state data with attached behavior;
Closures are behaviors with attached state data
and without the overhead of classes.)

Peter Norvig, Harlequin, Inc. 15 Object World, May 5, 1996

Pattern: Strategy
  Intent: Define a family of interchangeable algorithms
  Motivation: Different line-breaking algorithms
  Participants: Strategy, ConcreteStrategy, Context
  Implementation:
class Compositor ...;
class TeXCompositor : public Compositor...;
class Composition {
 public: Composition(Compositor*); ...};
...
Composition* c =
 new Composition(new TeXCompositor);
c.compositor->Compose();

Peter Norvig, Harlequin, Inc. 16 Object World, May 5, 1996

Dynamic Pattern: Strategy
  The strategy is a variable whose value is a function

(E.g., with first-class functions, pattern is invisible)
  Implementation:
compositor := TeXcompositor;
compositor(...);

  General principle: no need for separate classes that
differ in one (or a few) well-understood ways.

  May still want strategy objects:
make(<strategy>, fn: f, cost: 5, speed: 4)
but don’t need separate classes for each instance

Peter Norvig, Harlequin, Inc. 17 Object World, May 5, 1996

Macros
  Macros provide syntactic abstraction

You build the language you want to program in
  Just as important as data or function abstraction
  Languages for Macros

  String substitution (cpp)
  Expression substitution (Dylan, extend-syntax)
  Expression computation (Lisp)

Provides the full power of the language while you
are writing code

Peter Norvig, Harlequin, Inc. 18 Object World, May 5, 1996

Pattern: Interpreter
  Intent: Given a language, interpret sentences
  Participants: Expressions, Context, Client
  Implementation: A class for each expression type

An Interpret method on each class
A class and object to store the global state (context)

  No support for the parsing process
(Assumes strings have been parsed into exp trees)

Peter Norvig, Harlequin, Inc. 19 Object World, May 5, 1996

Pattern: Interpreter with Macros
  Example: Definite Clause Grammars
  A language for writing parsers/interpreters
  Macros make it look like (almost) standard BNF
Command(move(D)) -> “go”, Direction(D).

  Built-in to Prolog; easy to implement in Dylan, Lisp
  Does parsing as well as interpretation
  Builds tree structure only as needed

(Or, can automatically build complete trees)
  May or may not use expression classes

Peter Norvig, Harlequin, Inc. 20 Object World, May 5, 1996

Method Combination
  Build a method from components in different classes
  Primary methods: the “normal” methods; choose the

most specific one
  Before/After methods: guaranteed to run;

No possibility of forgetting to call super
Can be used to implement Active Value pattern

  Around methods: wrap around everything;
Used to add tracing information, etc.

  Is added complexity worth it?
Common Lisp: Yes; Most languages: No

Peter Norvig, Harlequin, Inc. 21 Object World, May 5, 1996

Pattern: Observer
  Intent: When an object changes, notify all interested
  Motivation: A spreadsheet and a bar chart are both

displaying the results of some process. Update both
displays when the process gets new numbers.

  Participants: Subject, Observer, ConcreteSubject,
ConcreteObserver

  Implementation:
Subject: methods for attach/detach observer, notify
Observer: method for update

Peter Norvig, Harlequin, Inc. 22 Object World, May 5, 1996

Observer with Method Combination
  Observer is just “notify after every change”

(With more communication in complex cases)
  Implementation: Use :after methods

Can be turned on/off dynamically if needed
Allows the implementation to be localized:
(mapc #’notify-after ‘(cut paste edit ...))
(defun notify-after (fn)
 (eval `(defmethod ,fn :after (x)
 (mapc #‘notify (observers x)))))

  Note no implementation needed in Subject class
  See Relation pattern for observers implementation

Peter Norvig, Harlequin, Inc. 23 Object World, May 5, 1996

The Type/Operation Matrix
  Programs have types and operations:

Three types of programming fill cells in different order:
  Procedural: write entire row at a time

(Problems with case statements)
  Class-Oriented: write column at a time (inherit some)
  Literate: fill cells in any order for best exposition

Rectangle Circle Line
draw
position
area

Peter Norvig, Harlequin, Inc. 24 Object World, May 5, 1996

Multimethods
  Operations often deal with multiple objects: f(x,y)

  Class-oriented has a distinguished object: x.f(y)
(May be unnatural, hard to extend)

  Multimethods allow literate programming
  Support Singleton and prototypes using == dispatch

Rect Circle Line

draw
Window

Point

move-to

distance

Shape

Peter Norvig, Harlequin, Inc. 25 Object World, May 5, 1996

Pattern: Builder
  Intent: Separate construction of complex object from

its representation; so create different representations
  Participants: Builder, ConcreteBuilder, Director,

Product
  Motivation: Read text document in RTF format

  Convert to one of many formats
  One conversion algorithm
  Details differ depending on target format

  Implementation: Separate class for each type of
object to build; another for the “director”

Peter Norvig, Harlequin, Inc. 26 Object World, May 5, 1996

Pattern: Builder
  Builder: TextConverter class with methods for

ConvertCharacter, ConvertParagraph, ...
  ConcreteBuilder: ASCIIConverter, TeXConverter, ...
  Director: Builder slot and algorithm for conversion
  Product: ASCIIText, TeXText, ...
  Total of 2n + 2 classes
  Implementation:
switch(t=GetToken().Type) {
 CHAR: builder->ConvertChar(t);
 FONT: builder->ConvertFont(t);
 PARA: builder->ConvertParagraph(t);}

Peter Norvig, Harlequin, Inc. 27 Object World, May 5, 1996

Pattern: Builder with Multimethods
  No builder or director classes; n product classes
  One builder function (extensible: no switch)
  n methods for conversion (convert)
  Implementation:
target-class := <TeX-Text>;
target := make(target-class);
...
token := get-token();
convert(token, token.type, target);
...
define method convert
 (token, type==#”font”, target::<TeX-Text>)

Peter Norvig, Harlequin, Inc. 28 Object World, May 5, 1996

Modules
  In C++, classes organize, implement object behavior

and define name spaces
  This leads to problems:

  Compromises between two purposes
  Need more selective access than public/private
  Friend classes don’t work well

  Separate modules relieve the class of double-duty
  Can have multiple modules for one library of code

Peter Norvig, Harlequin, Inc. 29 Object World, May 5, 1996

Pattern: Facade
  Intent: Provide a simple interface to a subsystem
  Motivation: A complex system may have many

pieces that need to be exposed. But this is confusing.
Supply a simpler interface on top of the system.

  Participants: Facade, SubsystemClasses
  Example: A Compiler class that calls scanner, parser,

code generator in the right way
  Facade pattern with modules is invisible

  Don’t need any bookkeeping objects or classes
  Just export the names that make up the interface

Peter Norvig, Harlequin, Inc. 30 Object World, May 5, 1996

Other Invisible Patterns
  The following patterns are invisible in dynamic

languages, and usually implemented more efficiently
  Smart Pointers

(Pointers that manage copy constructors)
  Reference Counting

(Automatic memory management)
  Closures

(Functions with bound variables)
  Wrapper Objects

(Objects with one data member, a primitive type such
as a character or 32-bit integer)

Peter Norvig, Harlequin, Inc. 31 Object World, May 5, 1996

(3) New Dynamic Language Patterns
  First-Class Patterns: make the design more explicit
  Iterators: a study of C++, Dylan, Smalltalk and Sather
  Mixing compile time and run time

(Memoization, Compiler, Run time loading,
Partial Evaluation)

  Freedom of syntactic expression
(Decision tables, Rule-based translator)

  Freedom from implementation details
(Relation)

Peter Norvig, Harlequin, Inc. 32 Object World, May 5, 1996

First-Class Design Patterns
  Define the pattern with code, not prose
  Use the pattern with function or macro call(s),

not a comment
  Implement with classes, objects, functions, macros
  This is the second half of abstraction:

Assigning something to a name.
It works better when something is a real object.
(It is hard because many patterns are not localized.)

  It’s easier when code needn’t be organized by class
Then the call to the pattern can generate any code

Peter Norvig, Harlequin, Inc. 33 Object World, May 5, 1996

First Class Pattern: Subroutine
  Long ago, subroutine call was just a pattern
  Involves two parts: call and definition
load R1, x SQRT:
load R0, *+2 ...
branch SQRT branch @R0

  Nowadays, made formal by the language
sqrt(x); function sqrt(x) ...

  Note there are still 2 parts in formal use of pattern
  Many patterns are harder to define formally because

their use is spread out over more than two places

Peter Norvig, Harlequin, Inc. 34 Object World, May 5, 1996

First Class Pattern Implementation
  As abstract class:
define class <adapter> ()
 slot adaptee;
end

  As generic function:
define generic iteration-protocol(object)

  As a macro:
define grammar
 Command(go(D)) -> “go”, Direction(D);
 ...
end;

Peter Norvig, Harlequin, Inc. 35 Object World, May 5, 1996

Pattern: Protocol Method
  Intent: Implement set of related operations
  Implementation: Define a protocol method that

returns the required functions. Arrange to call the
functions as needed.

  Participants: Protocol generic function, Client(s)
  Example: Protocol returns 2 objects, 3 functions:

 iteration-protocol(object) =>
 state, limit, next, done?, current

  Advantages: Doesn’t require unique parent class
Can be quicker to compute all at once
Often avoid allocating bookkeeping objects, classes

Peter Norvig, Harlequin, Inc. 36 Object World, May 5, 1996

Pattern: Protocol Method
  Interfaces have 3 potential users, those who want to:

  Use existing code properly
  Extend an existing class
  Implement for a brand new base class

  Protocols can make this distinction
  Classes can also make it, via virtual functions

(But don’t allow a new class not derived from base)

Peter Norvig, Harlequin, Inc. 37 Object World, May 5, 1996

A Study in Patterns: Iterator
  Intent: allow access to each element of collection
  Motivation: separate interface/implementation,

allow multiple accesses to same collection
  Participants: Iterator, ConcreteIterator, Collection,

ConcreteCollection
  C++ Implementation: Problems: Creating, deleting

iterators; Need for dual hierarchy; Ugly syntax:
ListIter<Employee*>* i=employees->Iter();
for (i.First(); !i.IsDone(); i.Next());
 i.CurrentItem()->Print();
delete i;

Peter Norvig, Harlequin, Inc. 38 Object World, May 5, 1996

C++ Pattern: Internal Iterator
  Intent: An iterator to which you provide an operation

that will be applied to each element of collection
  Example: print a list of employees
template <class Item> class List
template <class Item> class ListIter
 public: bool Traverse();
 protected: virtual bool Do(Item&);
class PrintNames : ListIter<Employee*>
 protected: bool Do(Employee* & e) {
 e->Print();}
...
PrintNames p(employees); p.Traverse();

Peter Norvig, Harlequin, Inc. 39 Object World, May 5, 1996

Smalltalk Pattern: Internal Iterator
  Closures eliminate the need for iterator classes

(Replace 10 or so lines of code with 1)
  Pass a block (function of one arg) to the do: method
employees do: [:x | x print]

  Easy for single iteration
  Also used heavily in Lisp, Dylan
  Inconvenient for iteration over multiple collections

How do you compare two collections?
How do you do element-wise A := B + C?

Peter Norvig, Harlequin, Inc. 40 Object World, May 5, 1996

Dylan Pattern: Iteration Protocol
  Iteration protocol instead of iterator classes
  The protocol returns 2 objects, 3 functions:
iteration-protocol(object) =>
 state, limit, next, done?, current

  Designed for optimization (see Lazy Evaluation)
  No need for parallel class hierarchy of iterators

Do need to provide (or inherit) iteration protocol
  Capability to define operations on protocol results

More flexible algebra of iterators
(reverse, first-n, lazy-map)

Peter Norvig, Harlequin, Inc. 41 Object World, May 5, 1996

Dylan Pattern: Iteration Protocol
  Simple syntax
for(i in collection) print(i) end;

  Multiple iteration allowed with more complex syntax
for(i in keys(A), x in B, y in C)
 A[i] := x + y;
end;

  Dylan also supports internal iteration:
do(print, collection)

  Many internal iterators (higher-order functions):
always?(\=, A, B);
map-into(A, \+, B, C);

Peter Norvig, Harlequin, Inc. 42 Object World, May 5, 1996

Dylan: Iteration Protocol Algebra
  Add a class named <iterator> with slots
object and protocol such that:
iteration-protocol(i :: <iterator>) =>
 protocol(i.object)

  Add functions to make objects of this class:
define function backward (collection)
 make(<iterator>, object: collection,
 protocol: reverse-iteration-protocol);

  Use the functions to build <iterator>s:
 for (x in C.backward) ... end;

  This may soon be built-in to Dylan’s syntax:
 for (x in C using reverse-iteration-protocol)

Peter Norvig, Harlequin, Inc. 43 Object World, May 5, 1996

Pattern: Lazy Mapper Iteration
  Adding a lazy mapper iterator

make(<iterator>,object: c, protocol: f.lazy-mapper)

  Implementing the lazy-mapper:
define function lazy-mapper (fn)
 method (coll)
 let (state, lim, next, done?, current) =
 iteration-protocol(coll);
 let mapper = method (c, state)
 fn(current(c, state));
 end;
 values(state, lim, next, done?, mapper)
 end;
end;

Peter Norvig, Harlequin, Inc. 44 Object World, May 5, 1996

Sather Pattern: Coroutine Iterator
  Notion of iterators as coroutines. In ARRAY class:
index!:INT is
 loop yield 0.to!(self.size-1) end
end;
elt!:T is
 loop yield self[self.index!] end
end;

  Anonymous iteration: no need for variable names:
loop
 A[A.index!] := B.elt! + C.elt!
end;

Peter Norvig, Harlequin, Inc. 45 Object World, May 5, 1996

Pattern: Coroutine
  Intent: separate out distinct kinds of processing; save

state easily from one iteration to the next
  Implementation: Most modern language

implementations support an interface to the OS’s
threads package. But that has drawbacks:
  No convenient syntax (e.g. yield, quit)
  May be too much overhead in switching
  Problems with locking threads

  Implementation: Controlled uses of coroutines can
be compiled out (Sather iters, Scheme call/cc)

Peter Norvig, Harlequin, Inc. 46 Object World, May 5, 1996

Pattern: Control Abstraction
  Most algorithms are characterized as one or more of:

Searching: (find, some, mismatch)
Sorting: (sort, merge, remove-duplicates)
Filtering: (remove, mapcan)
Mapping: (map, mapcar, mapc)
Combining: (reduce, mapcan, union, intersection)
Counting: (count)

  Code that uses these higher-order functions instead of
loops is concise, self-documenting, understandable,
reusable, usually efficient (via inlining)

  Inventing new control abstractions is a powerful idea

Peter Norvig, Harlequin, Inc. 47 Object World, May 5, 1996

Pattern: New Control Abstraction
  Intent: Replace loops with named function or macro
  Motivation: A control abstraction to find the best

value of a function over a domain, find-best
  Examples:
find-best(score, players);
find-best(distance(x), numbers, test: \<);
where define function distance(x)
 method (y) abs(x - y) end; end;

  Implementation: A simple loop over the collection,
keeping track of best element and its value.
In some cases, a macro makes code easier to read

Peter Norvig, Harlequin, Inc. 48 Object World, May 5, 1996

Pattern: Memoization
  Intent: Cache result after computing it, transparently
  Example:
(defun-memo simplify (x) ...)

  Implementation: Expands into (roughly):
(let ((table (make-hash-table)))
 (defun simplify (x)
 (or (gethash x table)
 (setf (gethash x table) ...))))

  Complications: Know when to empty table, how
many entries to cache, when they are invalid

Peter Norvig, Harlequin, Inc. 49 Object World, May 5, 1996

Pattern: Singleton as Memoization
  Can use memoization to implement Singleton pattern
  Implementation:
(defmethod-memo make ((class SINGLETON))
 ...)

  Invisible Implementation: Don’t need singletons if
you can dispatch on constants:
define constant s1 = make(<class>, n: 1);
define method m (x == s1) ... end

define constant s2 = make(<class>, n: 2);
define method m (x == s2) ... end

Peter Norvig, Harlequin, Inc. 50 Object World, May 5, 1996

Pattern: Compiler
  Like the Interpreter pattern, but without the overhead
  A problem-specific language is translated into the host

programming language, and compiled as normal
  Requires complex Macro capabilities

May or may not require compiler at run time
  A major factor when Lisp is faster than C++
  In a sense, every macro definition is a use of the

Compiler pattern (though most are trivial uses)
  Examples: Decision trees; Window, menu layout;

Definite Clause Grammar; Rule-Based Translator

Peter Norvig, Harlequin, Inc. 51 Object World, May 5, 1996

Pattern: Run-Time Loading
  Intent: Allow program to be updated while it is

running by loading new classes/methods (either
patches or extensions). Good for programs that
cannot be brought down for upgrades.

  Alternative Intent: Keep working set small, start-up
time fast by only loading features as needed

  Implementation: DLLs, dynamic shared libraries.
Language must allow redefinition or extension

Peter Norvig, Harlequin, Inc. 52 Object World, May 5, 1996

Pattern: Partial Evaluation
  Intent: Write literate code, compile to efficient code
  Example:
define function eval-polynomial(x, coefs)
 let sum = 0;
 for (i from 0, c in coefs)
 sum := sum + c * x ^ i;
 end;
 sum;
end;

such that eval-polynomial(x, #[1, 2, 3])
compiles to 0 + 1 + 2 * x + 3 * x * x
or better yet 1 + x * (2 + 3 * x)

Peter Norvig, Harlequin, Inc. 53 Object World, May 5, 1996

Pattern: Partial Evaluation
  Implementation: Mostly, at whim of compiler writer

(Harlequin Dylan, CMU Lisp compilers good at it)
  Alternative Implementation: Define a problem-

specific sublanguage, write a compiler for it with
partial evaluation semantics

  Example:
Macro call horner(1 + 2 * x + 3 * x ^ 2)
expands to 1 + x * (2 + 3 * x)

Peter Norvig, Harlequin, Inc. 54 Object World, May 5, 1996

Pattern: Rule-Based Translator
  Intent: For each pattern detected in input, apply a

translation rule
  Special case of Interpreter or Compiler
  Example:
define rule-based-translator simplify ()
 (x + 0) => x;
 (x * 1) => x;
 (x + x) => 2 * x;
 (x - x) => 0;
 ...
end;

Peter Norvig, Harlequin, Inc. 55 Object World, May 5, 1996

Pattern: Relation
  Intent: Represent that x is related to y by R
  Motivation: Often, this is done by making a R slot in

the class of x and filling it with y. Problems:
  May be no common superclass for x’s
  y may take less than a word (say, 1 bit)
  Don’t want to waste space if most y’s are void
  Don’t want to page if cycling over R’s

  Solution: Consider a range of implementations, from
slot to bit vector to table to data base. Provide a
common interface to the implementations.

Peter Norvig, Harlequin, Inc. 56 Object World, May 5, 1996

(4) Design Strategies
  What to Build

(Class libraries, frameworks, metaphors, ...)
  How to Build

(Programming in, into, and on a language)
  How to Write

(Literate programming vs. class-oriented/obsessed)
  Specific Design Strategies

(Open Implementation; English Translation)
  Metaphors: The Agent Metaphor

(Is agent-oriented programming the next big thing?)
  Combining Agent Components

Peter Norvig, Harlequin, Inc. 57 Object World, May 5, 1996

What to Build
  Class Libraries / Toolkits

Generic (sets, lists, tables, matrices, I/O streams)
  Frameworks

Specialized (graphics), “Inside-Out” (callbacks)
  Languages

Generic or Specialized (Stratified Design)
  Design Process

Source control, QA, Design rationale capture, ...
  Metaphors

Agent-Oriented, Market-Oriented, Anytime
Programming

Peter Norvig, Harlequin, Inc. 58 Object World, May 5, 1996

How to Build
  Programming In a language

The design is constrained by what the language offers
  Programming Into a language

The design is done independently of language, then
the design is implemented using features at hand

  Programming On a language
The design and language meet half way. This is
programming into the language you wish you had; a
language you build on the base language.
Sometimes called Stratified Design.

Peter Norvig, Harlequin, Inc. 59 Object World, May 5, 1996

How to Build: Abstraction
  Data abstraction: encapsulation, first-class types
  Functional abstraction: first-class functions, closures
  Syntactic abstraction: macros, overloading
  Control abstraction: macros and high-order functions
  Design process abstraction: abstract away files, deal

with phases of project, explicit development process
  Resource abstraction: separate what it takes to do it

from what is done (See Open Implementation)
  Storage abstraction: garbage collection, no new,

slot access and function calls have same syntax

Peter Norvig, Harlequin, Inc. 60 Object World, May 5, 1996

How to Write: Literate Programming
  Literate Programming: allow programmer to decide

how best (in what order) to present the program
  Obsession: insisting on one’s favorite organization
  Class-Oriented Prog: Organize text around classes
  Class-Obsessed Prog: Doing this to an extreme
  C++: Oriented to class and copy, not pure objects
  Lisp, Dylan: Oriented to pure objects, modules,

literate programming, not class over functions
  Anti-Object-Obsessed: “I do not believe in things. I

believe only in their relationships” - George Braque

Peter Norvig, Harlequin, Inc. 61 Object World, May 5, 1996

Class-Oriented or Class-Obsessed?
  Class-based textual organization good for elementary

abstract data types
  Good to have some organization guidelines
  C++ provides several escapes from class-obsession
  C++ encourages bookkeeping classes

(Visitor pattern serves only to get around restriction)
  Need bookkeeping especially for n-ary relations
  friend and related accesses are complex
  Class-based names don’t replace a real module

system
  Class-oriented organization prevents certain macros

Peter Norvig, Harlequin, Inc. 62 Object World, May 5, 1996

Strategy: Open Implementation
  Intent: Open up the black box; performance counts
  Motivation: A spreadsheet could be implemented by

making 100x100 small windows. The window
system’s interface allows this, but it would be
inefficient. Could we persuade the system to use an
efficient implementation just this once? Then we
don’t have to re-code all the stuff that already works.

  Idea: Complex interfaces are split in two: one for the
specification, and one for the implementation. When
it matters, specify the implementation you need

  (See Programmable Programming Language)

Peter Norvig, Harlequin, Inc. 63 Object World, May 5, 1996

Design Strategy: English Translation
  To insure that your program says what you mean:

(1) Start with English description
(2) Write code from description
(3) Translate code back to English; compare to (1)

  Example: (1), (2) from a Lisp textbook
(1) “Given a list of monsters, determine the number
 that are swarms.”
(2) See next slide
(3) “Given a list of monsters, produce a 1 for a
 monster whose type is swarm, and a 0 for others.
 Then add up the numbers.”

Peter Norvig, Harlequin, Inc. 64 Object World, May 5, 1996

Design Strategy: English Translation
  Example, step (2):

(defun count-swarms (monsters)
 (apply ‘+ (mapcar
 #’(lambda (monster)
 (if (eql (type-of monster)
 ‘swarm)
 1 0))
 monsters)))

  (Small changes not relevant to problem were made)

Peter Norvig, Harlequin, Inc. 65 Object World, May 5, 1996

Design Strategy: English Translation
  Code taking the strategy into account:
  (1) “Given a list of monsters, determine the number

 that are swarms.”
  (2) A straight-forward implementation:

(defun count-swarms (monsters)
 (count ‘swarm monsters :key #’type-of))

  (3) “Given a list of monsters, count the number
 whose type is swarm.”

Peter Norvig, Harlequin, Inc. 66 Object World, May 5, 1996

Metaphor: Agent Programming
Traditional Program
  Function
  Input / output
  Logic-based
  Goal-based
  Sequential, single-
  Hand Programmed
  Design trade-offs
  Fidelity to expert

Agent Program
  Agent
  Percept / action
  Probability-based
  Utility-based
  Parallel, multi-
  Trained (Learning)
  Run-time trade-offs
  Perform well in env.

Peter Norvig, Harlequin, Inc. 67 Object World, May 5, 1996

Agent Programming Technology
Mathematics
  Decision Theory
  Control Theory
  Statistical Optimization
  Economic Theory
  Markov Decision

Processes

Artificial Intelligence
  Machine Learning
  Neural Networks
  Reinforcement Learning
  Bayesian Networks
  Anytime Programming

Peter Norvig, Harlequin, Inc. 68 Object World, May 5, 1996

Design for a Rational Agent

  Calculate P(current state)
  Based on evidence, percept, last action

  Calculate P(Result(Act)) ,U(Result(Act))
  Nondeterministic: many states, results

  Calculate expected utility EU for each action
  EU(Act) = Σi P(Resulti (Act))·U(Resulti (Act))

  Choose the Action with highest expected utility
  Best Act = argmaxA EU(ActA)

  Approximate if not enough resources to compute

Peter Norvig, Harlequin, Inc. 69 Object World, May 5, 1996

Rational Reasoning
  Obey Principle of Maximum Expected Utility
  Apply at design or run time as appropriate
  Not a new idea: “To judge what one must do to obtain

a good or avoid an evil, it is necessary to consider not
only the good and the evil in itself, but also the
probability that it happens or does not happen; and to
view geometrically the proportion that all these things
have together.”

  A. Arnauld, The Art of Thinking, 1662
  Has been the basis of most science since then

(Economics, Medicine, Genetics, Biology, OR, ...)

Peter Norvig, Harlequin, Inc. 70 Object World, May 5, 1996

The Three Laws of Robotics
  (1) Don’t harm humans, through action or inaction
  (2) Obey humans, except when conflict with (1)
  (3) Protect self, except when conflict with (1, 2)
  Why Asimov was wrong

  Too Boolean: need notions of utility, probability
  Problems with “cause,” “protect,” “harm,” etc.

  Laws can be seen as defining utility function only
  Still too absolute

  Actually, Asimov probably knew it (Roundabout)

Peter Norvig, Harlequin, Inc. 71 Object World, May 5, 1996

Object-Oriented Programming
Lessons Learned:
  Abstraction: data (objects), procedural (interfaces)

  What, not how, it computes
  No global variables; no top level

  Any computation might be embedded
  Reuse through inherit and modify
  Composition through standard techniques:

  Conditional, sequential, loop/recursion
  P is closed under composition

(But real programmers make finer distinctions)

Peter Norvig, Harlequin, Inc. 72 Object World, May 5, 1996

Agent Programming
Lessons Learned:
  Plan abstraction

  What, not how, it acts
  Resource allocation optimized separately (MS)

  No top level goals
  Any agent can be retargetted

  Reuse through parameter-setting optimization
  Composition is not straightforward:

  Economic (Market-Oriented) Programming
  Anytime Programming

Peter Norvig, Harlequin, Inc. 73 Object World, May 5, 1996

Combining Agent Components
  Essential for modular, scaleable, reusable systems
  Reuse in new or changed environment

  Machine learning/statistical optimization
  Reuse with retargeted goal or utility function

  Real advantage over traditional programming
  Allocating resources to agent components/tasks

  Anytime programming
  Scaling up to multiple cooperating agents

  Economic (Market-Oriented) Programming

Peter Norvig, Harlequin, Inc. 74 Object World, May 5, 1996

Real-Time Resource Allocation
  Sensing and planning as information sources

  Manage based on value of information
  Assumes time-dependent utility function
  Value depends on quality, time, ease of use

  Trade-off value of information vs. resources
  Build out of anytime and contract components

(Interrupt when results are good enough)
  Modularize construction vs. optimization
  Maintain conditional performance profiles

Peter Norvig, Harlequin, Inc. 75 Object World, May 5, 1996

Compilation of Anytime Algorithms
  Given: components with performance profiles, Q

  Interpret(Data); Q(Interpret, t) = ...
  PlanPath(A, B, S); Q(PlanPath, Qs, t) = ...

  Given: an abstract overall algorithm
  E.g. A = PlanPath(A, B, Interpret(Camera()))
  Q(A,t) = max Q(PlanPath, Q(Interpret, t1), t2)

 where t = t1 + t2

  Find optimal allocation of resources
  Monitor and adapt at run-time

Peter Norvig, Harlequin, Inc. 76 Object World, May 5, 1996

Technology for Multi-Agent Systems
  Market-Oriented Programming

  Bid in a competitive market of resources
  The market optimizes the value of resources

  Protocol Engineering
  Make the market communication efficient

  Incentive Engineering
  Achieve good for community

  Natural Language (and other) Communication
  Communication among programs and humans

