
LISP { a Language for Internet Scripting and

Programming

Timothy J. Hickey�,

Peter Norvigy

Kenneth R. Andersonz

Abstract

In this paper we argue that LISP can provide a powerful tool for web program-
mers, at both the novice and expert level, and that LISP has the potential to become
a language of choice for writing both client-side and server-side internet programs.
The syntactic and semantic simplicity of LISP enables non-experts to quickly master
a basic level of LISP programming. Its higher order functions enable the implementa-
tion of a simple and elegant LISP interface to Java methods, �elds, and constructors.
With this interface, LISP provides full and simple access to the versatile and om-
nipresent Java class libraries. The conciseness of some dialects of LISP (e.g., Scheme)
makes it relatively easy to implement compact LISP interpreters in Java and LISP-
to-Java compilers. LISP can then be called from Java programs and Java-enabled
browsers. The declarative nature of LISP allows one to design and implement simple,
declarative interfaces to the Java class libraries, which allow one to create applets
and client-server software which is much more concise and comprehensible than the
same programs written in imperative languages such as Java or Javascript (for applet
programming) or Java, Perl, C++, or C for client-server programs. Two additional
fertile applications for LISP on the internet are debugging and scripting of Java code.
In this paper, we provide small examples of all of these applications, describe our
LISP implementation (SILK - Scheme In 50 KB), and ponder the future of LISP as
a language for internet scripting and programming.

1 Introduction

LISP is poised to leap into the mainstream in a new role as a web programming language.
The exponential growth in the WWW is due in large measure to the simplicity, in the eyes
of the user, of the technology. To navigate the web one need only know how to read and

�Computer Science Department, Brandeis University, Waltham, MA
yJunglee Corporation, Sunnyvale, CA (currently at NASA Ames Research Center, Mo�ett Field, CA)
zBolt, Beranek, and Newman, Cambridge, MA

1

click. Creating a web page is only slightly more demanding due to the reliance on the
syntactically simple HTML model and the use of a relatively small set of text formatting
commands.

Applet programming has not made the same inroads into the public consciousness. One
reason for the relative dearth of applets is the relative di�culty in learning Java (or Java
Script). What LISP has to o�er is a simple syntax and declarative semantics which can
easily be mastered at an elementary level by novices, combined with a powerful abstraction
mechanism that will appeal to programming professionals of all types, not just experienced
LISP programmers.

In this paper we describe our initial e�orts to extend LISP into a web programming
language. We have selected Scheme as the LISP dialect, primarily due to its simplicity and
its small size (which translates into short download time for a Scheme interpreter), and we
have developed a web-based dialect of Scheme, called SILK [8]; and a declarative interface
to the Java libraries, called JLIB [3].

1.1 Design Goals

To gain wide acceptance, the entire process of creating applets in LISP, debugging them,
and adding them to a web page must be as simple as possible and must, in addition, result
in applets that are at least as fast as Java applets.

1. Easy access. By implementing an integrated development environment for LISP as
an applet, web denizens are able to start writing and running LISP programs and
applets by simply visiting a web page. There is no software to install beyond the
browser and no special skills to master before learning LISP. We have implemented a
simple LISP interpreter applet (written in LISP) which allows users to peruse several
example applets and to write and modify their own.

2. Simple creation of applets. By developing a high level declarative interface to the
most commonly used parts of the Java libraries, we are able to provide a rapid entry
path into applet writing for novice (and expert) programmers alike. The development
of helpful online libraries of sample code and tutorials will also serve to further this
goal. We have implemented a library (JLIB) which provides a declarative \Graphical
User Interface" (GUI) toolkit. This toolkit is discussed in more detail below. We
have used an early version of this library to provide an introduction to GUI design in
an undergraduate course in Computer Graphics (CS155, Brandeis University, Spring
1998). After one 50 minute lecture the students were able to implement fairly sophis-
ticated graphical applications in Scheme. To reach the same level of pro�ciency in
Java in the same course required 10 lectures. We are currently using this library in an
"Introduction to Computers" course (CS2a, Brandeis University, Autumn 1997, Au-
tumn 1998) for non-computer science majors. We plan to spend four weeks teaching
the fundamentals of programming and GUI design using Scheme as a �rst language.
The advantage of teaching Scheme over Java at the introductory level is that the
syntax and semantics of Scheme can be covered fairly completely in a few lectures,

leaving ample time to explore the GUI libraries and other interesting topics. Mo-
rover, the simple interface to Java allows us to introduce the graphics constructors
and methods at the very beginning along with the arithmetic constants and opera-
tors. In contrast, it usually requires an entire semester to provide an introduction
to Java, and most of the \Java as a �rst language" texts don't begin to cover the
java.awt library until late in the book, if at all.

3. Simple debugging. This is an area where AI techniques could be quite helpful.
Detecting and explaining common syntax and runtime errors is a crucial step in
teaching a new language. Tools which provide this type of support could increase
the interest in this language in the mainstream. Our current debugging support is
minimal and provides only the basic commands: step, skip, and continue.

4. Simple incorporation in web pages. There are two approaches here. One is to
develop a LISP-to-bytecode compiler which compiles LISP applets directly to class
�les (or indirectly through Java). This requires LISP applet writers to download
the compiler (or change the security restrictions on a compiler applet). The other
approach is to write a LISP interpreter applet in which the LISP program to be
evaluated is passed as a parameter. We have concentrated on the latter, and have
developed a threaded interpreter-based applet. We are presently working on compiler-
based applets.

5. Fast download and execution. By using a LISP-to-bytecode compiler, we can
in principle create applets which are as fast or faster than those written directly in
Java, but this requires the applet writer to have access to a Java Development Kit
since such a compiler must read and write local �les and so will not run as an applet.
We have opted instead to develop a LISP interpreter applet written in Java. Since
the LISP interpreter is relatively small, we can attain reasonable download times,
and by using compiler technology in the interpreter, we attain respectable execution
times for interpreted applets. For example, the LISP interpreter applet itself requires
about 8 seconds to download and initialize on a 200 Mhz Mac PPC running Netscape
4.04 under Linux with a T1 internet connection). It is possible to combine these two
approaches by providing access to compiled libraries of Scheme procedures, which can
be stored in the class archive and used by the applets. We have implemented this
approach for the JLIB library mentioned above.

1.2 The Primitive LISP-Java Interface

The LISP-Java interface we have implemented is based on two procedures:

(constructor CLASSNAME ARG1TYPE ARGNTYPE)

(method METHODNAME CLASSNAME ARG1TYPE ARGNTYPE)

The constructor procedure is given a speci�cation of a Java constructor (classname and
argument types) and returns a procedure implementing that constructor. The method

procedure accepts a speci�cation of the method (methodname, classname, and argument
types) and returns a procedure implementing that method.

For example, to determine whether a large number is probably prime with an error of
about 1=2n, we can use the "isProbablePrime" method of the "BigInteger" class (Note that
the con�dence limit, "n", is the last parameter of this method):

(define BigInteger

(constructor "java.math.BigInteger" "java.lang.String"))

==> BigInteger

(define isProbablePrime

(method "isProbablePrime" "java.math.BigInteger" "int"))

==> isProbablePrime

(isProbablePrime (BigInteger "1231231231231231231231") 10)

==> false

In this short session we have used the java.math package to demonstrate that the 22 digit
number above is probably composite. (Note that we don't know any of its factors.)

We also need to be able to access and modify �elds of objects. This is done using the
following two procedures:

(field-getter FIELDNAME CLASSNAME)

(field-setter FIELDNAME CLASSNAME)

The �rst returns a procedure for accessing the �eld's value, and the second returns a
procedure for modifying the �eld's value.

So, for example, if "Pair" is a class in a package "silk" with a �eld "�rst",

public class Pair {

public Object first, rest;

public Pair(Object car, Object cdr) {

first = car; rest = cdr;

}

}

then we could de�ne and use a constructor of Pairs and a getter and setter of "�rst" as
follows:

(define mycons

(constructor "silk.Pair" "java.lang.Object" "java.lang.Object"))

(define mycar (field-getter "silk.Pair" "first"))

(define mysetcar (field-setter "silk.Pair" "first"))

(define a (mycons 1 2.5))

(display (mycar a))

(mysetcar a "hi")

(display (mycar a))

Its interesting to observe that the �eld-getter and �eld-setter procedures can be de�ned
using the "method" and "constructor" procedures and the "java.lang.re
ect" package, as
follows:

(define getClass (method "getClass" "java.lang.Object"))

(define getField

(method "getField" "java.lang.Class" "java.lang.String"))

(define getFieldValue

(method "get" "java.lang.reflect.Field" "java.lang.Object"))

(define setFieldValue!

(method "set" "java.lang.reflect.Field" "java.lang.Object"

"java.lang.Object"))

(define classForName

(method "forName" "java.lang.Class" "java.lang.String"))

(define field-getter

(lambda (class-name field-name)

(let ((field (getField (classForName class-name) field-name)))

(lambda (object) (getFieldValue field object)))))

(define field-setter

(lambda (class-name field-name)

(let ((field (getField (classForName class-name) field-name)))

(lambda (object value)

(setFieldValue! field object value)))))

These procedures provide access to both instance and static variables. In the former case
they use the �rst parameter, object, to specify the instance variable, in the latter case, the
object parameter is ignored.

2 Declarative GUI programming

One of the most attractive features of LISP as a tool for building Graphical User Interfaces
is that it supports a declarative style of GUI building in which the expression which creates
a window has the same structure as the window itself. To attain this declarative simplicity
we have implemented a high level interface to the Java Abstract Windowing Toolkit (AWT).

This interface allows for declarative creation of all standard components: window, label,
textarea, text�eld, button, choice, etc. For example, to create a button with the label "Go",
or to create a choice of several numbers, one evaluates the following expressions.

(define b (button "Go"))

(define c (choice 1 2 3 4 5 10 25 50 100))

To provide a declarative layout mechanism we have implemented four layout methods:

1. (window name height width c1 ... cn) { create a window with the given name,
height and width which contains the speci�ed components c1,c2, ..., cn.

2. (row c1 c2 ... cn) { create a panel in which the components c1, ..., cn are ar-
ranged horizontally.

3. (col c1 c2 ... cn) { create a panel in which the components c1, ..., cn are ar-
ranged vertically.

4. (grid rows cols c1 ... cn) { create a panel in which the components c1, ...,
cn are arranged in a 2D grid with the speci�ed number of rows and columns. The
components are placed in the cell from left to right, from the �rst row through the
last. The grid cells all have the same shape and are just large enough to accomodate
any of the components.

Event handling is done using a procedure (pad comp proc) which takes a component
comp and a procedure proc of one argument and returns a component which responds to
an action event e by calling the procedure proc on e. Thus, to create a "hello world"
window with hide button, we simply evaluate the following expression. Observe how this
expression has the same form as the window it creates and that the action appears with
the component it is attached to.

(define w

(window "hello" 200 200

(col

(label "Hello World")

(pad (button "hide") (lambda (e) (hide w))))))

(show w)

Our �nal GUI abstraction is to introduce procedures for reading and writing strings
and Scheme terms on components. This is done with a group of procedures. The two most
commonly used are readExpr which reads the string labelling a component and parses it
into a LISP term, and writeExpr which writes a LISP term on a component.

(readExpr component)

(writeExpr component expr)

We can put these together to create a GUI for a program to compute your Body Mass
Index, as shown in Figure 1. (Note: this index is your weight in kilograms divided by your
height in meters squared. It should be between 20 and 25.)

A bmi-panel consists of three components arranged vertically. First is a 2x2 grid
containing the height and weight labels and text�elds, next is the button for computing
the BMI, and �nally is the text�eld where the BMI will be displayed. Observe that the
button is associated with an action using the "pad" procedure. Figure 1 shows the result
of evaluating this program using the SILK interpreter using Netscape 4.06 on an SGI Indy.
Note that the SILK interpreter GUI was written in SILK itself.

This high level interface is admittedly limited, but it is ideal for the novice user or
for an experienced user wanting to quickly implement a prototype. When more control
over the layout is desired, one can either resort to the primitive LISP-Java interface to
directly import procedures from the Java AWT (or any other Java windowing toolkit, such
as Swing), or one can develop a more sophisticated high level interface.

3 LISP Applets

There are two methods for embedding LISP applets into web pages. The �rst method,
which we currently use, is to implement a Scheme interpreter in Java, and to then create
a Java applet (say of class"lisp.LispApplet") which accepts a program and an expression
as applet parameters, creates the Scheme interpreter, loads the program, and evaluates the
expression. For example, the following is a sample applet tag for running the Body Mass
Index program from the previous section as an applet.

<applet height = 800 width = 600

code = "lisp.LispApplet.class">

<param name="program" value="BMI.scm">

<param name="expression" value="(add this-applet (bmi-panel))">

</applet>

The expression (add APPLET COMPONENT) adds the component to the applet, the variable
this-applet is initialized by the LISP interpreter applet. For this approach to be practical,
the LISP interpreter applet must be fairly small to enable short download times, i.e.,
lisp.LispApplet.class must be relatively small. Our current interpreter applet is around
50Kb of bytecode and download times vary from 5-45 seconds depending on the Java
Virtual machine, the hardware, the network connection, and the operating system.

The second method for embedding LISP applets into a web page is to use a LISP-to-
Java compiler. In this case, the LISP applet can be compiled to Java, and then further
compiled to a Java byte code class �le and so can be installed on a web page just as any
other applet is:

<applet height = 800 width = 600

code = "lispuser.BMI.class">

</applet>

Although this method requires more work, it has the potential to provide more e�cient
applets and greatly decreased download times. Another advantage of this approach is that
by compiling to Java, we are able to make use of the latest Java compilation technology.

Figure 1: The BMI GUI interpreted with the SILK interpreter

In both approaches, LISP provides a simple alternative to Java and Java script as an
applet-writing language. Ideally, we would like to have a new HTML (or XML) tag for
invoking lisp applets, e.g.,

<LISPapplet height = 800 width = 600

prog = "../demos/Grades.scm"

expr = "(run-code this-applet)">

or a Java Script style tag which would allow the program to be included directly in the web
page. These extensions could be achieved by building a LISP interpreter into the current
browsers.

4 Interactive Java Debugging and Scripting

A fertile area for LISP in the internet mainstream is debugging and testing. It is often
convenient in Java to put testing code in a static method, such as main(). Typically such
test code is not interactive. An interactive test loop can require a signi�cant amount of
code that can be unique for each class. While a testing tool, such as JUnit [1] may make
writing test cases easier, it may not be interactive enough to fully diagnose a problem.

Below we give an example of a session in which the user has tested some of the methods
and constructors from a Java program. The Java code in this example was written by one
of the authors as part of an Interval Arithmetic Constraint Solver.

The main point we wish to illustrate here is that LISP can be viewed as a powerful
interactive debugging tool for general Java programs. In this example below, we �rst
import a constructor and three methods into LISP.

;;;;;; MAP JAVA METHODS AND CONSTRUCTORS INTO LISP

;; create a table which stores variable-interval pairs

(define RealIntervalTable

(constructor "ia_parser.RealIntervalTable"))

;; parse a string into an internal representation of a constraint

(define parseString

(method "parseString" "ia_parser.Parser" "java.lang.String"))

;; store the variables of a constraint in an interval table

(define storeVariables

(method "bindVars" "ia_parser.Exp" "ia_parser.RealIntervalTable"))

;; use the constraint to narrow the intervals it contains

(define narrow (method "narrow" "ia_parser.Exp"))

After de�ning these procedures, we can interactively call these imported procedures and
examine the results.

;; EXPRESSION RESULT

(define c

(parseString "x = cos(x);")) ==> c

c ==> "x = cos(x);"

(define T (RealIntervalTable)) ==> T

T ==> ()

(storeVariables c T) ==> ()

T ==> (<x -> [-inf,inf]>)

(narrow c) ==> true

T ==> (<x -> [-1,1]>)

(narrow c) ==> true

T ==> (<x -> [0.540302,1]>)

(narrow c) ==> true

T ==> (<x -> [0.540302,0.857553]>)

In this example, parseString creates an interval expression, RealIntervalTable creates an ob-
ject for storing variable-interval bindings, storeVariables initializes the table to contain the
variable x in the constraint x=cos(x); with its current (most general) binding [-inf,inf],
stating that x can be any real number. The narrow procedure then attempts to shrink the
interval for x with out removing any solutions to the constraint "x=cos(x). If the inter-
val for x becomes empty (meaning the constraint has no solutions), then narrow returns
false, otherwise it returns true. Observe that the �rst call to narrow reduces the interval
for x to [-1,1], which is the range of cos. The next narrowing raises the lower bound,
and the next lowers the upper bound, this process can be repeated about 50 times until
a �xed point is reached, and the resulting interval is guaranteed to contain any solution
to cos(x)=x (assuming that the narrowing procedure has been written correctly). This
example shows how a simple Scheme interpreter combined with the Scheme-Java interface,
provides a powerful tool for interactively testing general Java programs.

Another attractive use of LISP is in writing scripts to implement applications by glueing
together previously developed Java programs with a little bit of LISP. For example, in
Figure 2 we show how a GUI for an interval arithmetic solver can be constructed in a few
lines of Scheme using the four imported procedures from the previous example. In this
example, we use the declarative GUI building library discussed above to build a simple
graphical interface which allows the user to type a constraint into a textarea and then push
a button to (iteratively) narrow the constraint, the resulting interval table is written into
another textarea.

;;;;;; Script a narrowing procedure

(define tab (RealIntervalTable))

(define (narrow-expr str)

(define con (parseString str))

(storeVariables con tab)

(if (narrow con) tab "NO SOLUTION"))

;;;;;; Create GUI components for user I/O

(define solvewin (window 300 300 "IAsolver"))

(define constraint (textarea 10 60))

(define variables (textarea 5 60))

;;;;;; Lay out GUI components and attach actions

(add solvewin

(col constraint

(pad (button "solve") (lambda (e)

(writeExpr variables

(narrow-expr (read_from constraint)))))

variables))

(validate solvewin) (pack solvewin) (show solvewin)

Figure 2: An Example of Scripting Java using LISP

5 SILK design issues

The Scheme implementation we use is SILK, for \Scheme In about 50 K". The original
versions up to SILK 1.0 were developed by Peter Norvig. After Peter made this implemen-
tation available on the web several people made useful (and sometimes almost identical)
extensions. SILK 2.0 compiles Scheme syntactic expressions into objects of class Code that
can be more e�ciently evaluated. Version 2.0 was started by Peter Norvig and completed
by Tim Hickey. The remainder of this section describes the design issues involved in the
two implementations.

The initial version of SILK was written in about 20 hours with about 650 lines of code.
The primary goals were to develop a LISP that was small, fast to load (even over the web),
easy to understand and modify, and that could interface to Java. SILK expanded to about
50KB of Java code over the next few months as it was extended to pass all of the tests in
Aubrey Ja�er's online r4rstest.scm test suite [4] which tests Scheme compliance with the
R4RS standard.

The class structure for SILK 1.0 is shown in Figure 3.

The SchemeUtils class contains the basic LISP procedures (e.g., car, cdr, cons) as static
methods. It is inherited by the �ve top level classes as a convenience (so that one can write
car(x) rather than SchemeUtils.car(x)). The class Scheme is the interpreter class and
it has been designed so that one could easily swap several interpreters in; perhaps a simple

SchemeUtils
Scheme
Environment
Pair
InputPort
Procedure

Primitive
JavaConstructor
JavaMethod
Continuation
Closure

Macro

Figure 3: Class Structure for SILK 1.0

interpreter, a tail-recursive interpreter, and an interpreter that supports full call/cc, as
in PAIP [7]. The Scheme primitives are stored in their own class so that it would be easy
to switch from R4RS to R5RS [5] Scheme primitives.

Once these class design issues are out of the way, the rest is pretty easy. In order to
build a Scheme interpreter, you basically need six things:

1. Read and write. The reader goes in the InputPort class. For output, most of the
functionality resides in a method, SchemeUtils.stringify, to convert an object to
a printable string. Once we have the string, printing is trivial, so one can use the
existing Java PrintWriter class, a new class for OutputPort isn't needed.

2. Eval and apply. The eval method goes in the Scheme class. There's also an apply

method there, but all it does is make sure you're applying a procedure and then
dispatches to the apply method in each subclass of Procedure. Unfortunately, we
have to repeat the code for applying a Closure (a user-de�ned Scheme procedure)
within the code for eval. This is necessary only to make sure that eval is properly
tail recursive. If Java were tail recursive, we wouldn't need to do this.

3. Memory management. Java handles this automatically.

4. Run-time stack. SILK uses the Java run-time stack. This means it don't have full
continuations, just throw-like ones, and it doesn't have good debugging capabilities.
But it does make things easier than implementing a separate Scheme stack. However,
SILK is properly tail recursive: calls in the tail position do not grow the stack.

5. Primitive functions The class Primitive provides for the application of primitive
procedures like list, pair?, and write. One possible implementation strategy is to
have each primitive be an anonymous inner class:

new Primitive("list", env, 0, n) {

public Object apply(Object args) { return args; }};

new Primitive("null?", env, 1) {

public Object apply(Object args)

{ return truth(first(args) == null); }};

The other possibility is to have a big switch statement. Since loading 150 inner
classes might be slow, SILK uses the big switch. This means a lot of busy work, and
breaking up the de�nition of each primitive into three places: �rst there is a long
list of �nal static ints for the switch labels, next all procedures need to be initialized
(since procedures are �rst class objects in Scheme), and the �nal part is the big switch
that de�nes the semantics of each primitive.

final static int ... LIST = 16,..,NULLQ = 23, // define constants

...

public static Environment installPrimitives(Environment env) {

int n = Integer.MAX_VALUE;

env.defPrim("list", LIST, 0,n)// list has 0 to n arguments

...

.defPrim("null?",NULLQ, 1) // null? has 1 argument

...;

}

public Object apply(Scheme interpreter, Object args) { ...

Object x = first(args);

switch(idNumber) { ...

case LIST: return args;

...

case NULLQ: return truth(x == null);

}

}

6. Primitive data types. Scheme has a dozen or so data types (depending on how �ne
distinctions you make) that are visible to the programmer. SILK implements these
data types using the simplest possible existing Java types wherever possible (see
Figures 4 and 5). So, for example, a Scheme vector is implemented as a Object[],
not a Vector, because Scheme vectors don't need to add and delete elements. Using
existing Java types means that we can't call obj.display(), because there is no
display() method on these existing Scheme classes, and of course you can't add a
method to an existing class in Java. So instead, we will have lots of static methods
in the SchemeUtils class. For numbers, version 1.0 had only one type: Double. The
Integer type was added in version 2.0 so that the exact/inexact distinction could be
correctly implemented.

Scheme Java Type Java Type Notes
Type (version 1) (version 2)
pair Pair Pair Java has no equvalent to use

empty list null null We could have Pair and Empty as
subclasses of List, or EMPTY could
be a static var. But it's easiest to
have null for (). This means only
static methods on lists. (It also
means we can't use Hashtables to
store Scheme objects!)

boolean Boolean Boolean Simple enough.
inexact
number

Double Double One could use BigDecimal, but
R5RS doesn't requuire it.

exact
number

Double Integer One could use BigInteger, but
R5RS doesn't requuire it.

string char[] char[] Can't
be String (they're immutable) un-
less we want to give up on imple-
menting string-set!. Could be
StringBuffer, but char[] is sim-
pler and su�cient.

character Character Character Simple enough
symbol String Symbol Strings (once interned) have the

right properties for symbols, but
it gets confusing when we interface
to Java code that uses Strings for
other things. So version 2 intro-
duces a Symbol class, which makes
things less confusing, and allows
global variable lookup to be faster.

vector Object[] Object[] Because Vector is more powerful
than is needed.

Procedure Procedure Procedure the abstract superclass.
Primitive Primitive a Scheme primitive.
Closure Closure a user-de�ned function.

SchemePrimitives SchemePrimitives Scheme code loaded at start-up.
Macro Macro a code expansion "Closure".

Continuation Continuation this is what you get from call/cc.
JavaMethod JavaMethod encapsulates a method.

JavaConstructor JavaConstructor encapsulates a constructor

Figure 4: Java Implementation of Scheme Types

Scheme Type Java Type Java Type Notes
(version 1) (version 2)

input port InputPort InputPort It would have been simpler
to use Reader, the code for
read needs to be put some-
where, and hence this class.

output port PrintWriter PrintWriter We could have had a class to
hold the method stringify,
but its not really necessary
to have another class.

interpreter Scheme Scheme The class Scheme imple-
ments eval, apply, and a
few other methods. Note
you can instantiate several
di�erent Schemes at once.

environment Environment GlobalEnvironment Implemented using Object[]
LambdaEnvironment Implemented as list of lists.

continuation Continuation Continuation this builds a Continuation

which, when applied, throws
a Runtime Exception. It
then sets up a try catch

block that catches that iden-
tical exception only.

error RuntimeException RuntimeException RuntimeExceptions are used
because they do not have to
be declared and so the SILK
code will not be cluttered up
with throws clauses.

symbol table (none) HashTable In version 1, Scheme sym-
bols are represented as in-
terned Strings. In version 2,
we maintain our own String
! Symbol Hashtable as a
static variable in Symbol.

variable (none) (none) Variables are referred to im-
plicitly by their position in
Environments.

Figure 5: Java Implementation of Scheme Types (continued)

6 Comparison of Scheme Implementations

Scheme is a powerful but tiny language. The entire language manual, including it's de-
notational semantics, is 50 pages long. A Scheme interpreter is easy to implement. Also,
techniques for compiling Scheme programs are well known. These facts have lead to many
Scheme implementations with a broad range of sizes and performance characteristics. For
example, Kelsey and Rees found seven Scheme implementations all less than 14,000 lines,
and 3 implementations that ranged from 25,000 to 120,000 lines [6]

Each language that Scheme is implemented in provides both opportunities and chal-
langes. For example, when implementing Scheme in C, one must work hard to provide
garbage collection and tail recursion. (call-with-current-continuation) is often the hardest
thing to implement in any base language.

One advantage of Java is that garbage collection is provided. One disadvantage is that
it is not possible to take advantage of the compact representations for some Scheme data
types. For example in Scheme (or LISP in general), small objects such as characters and
small integers are often represented as an "immediate" pointer sized object. A list cell, a
cons, can be represented as two words.

In Java, this is not possible. Any Scheme object must be represented as a Java object.
Currently, in JDK 1.1.6, a Java object requires at least 12 bytes of storage. For example,
a pair, which in SILK is represented by an instance of the class Pair, requires 24 bytes.

The following subsections describe the Scheme-in-Java dialects we are aware of, and
contrasts their capabilities. Figure 6 shows the relative sizes of the implementations. We
use raw line counts because they often contain both code and documentation. Silk is
written in a rather compressed style, so the table may be unfair to implementations written
in another style or with other goals in mind.

6.1 Silk 1.0

Silk 1.0 was designed to be a tiny Scheme environment. It is programmed in a style that
makes extensive use of static methods so the code looks relatively Scheme-like. Existing
Java classes were used wherever possible. Java null is used as the empty list. Extensions
to interface to Java are minimal: (constructor) and (method).

Implementation Java �les lines Scheme �les lines
Silk 1.0 12 1905 0 0
Silk 2.0 20 2778 0 0
Skij 28 2523 44 2844
Jaja 66 5760 2 173
Kawa 273 16629 14 708

Figure 6: Scheme implementation statistics

6.2 Silk 2.0

Silk 2.0 provides a higher performance evaluator by splitting eval() into two steps: �rst
compile the meaning of the object, and then call the eval method on the meaning. This
gains e�ciency because the compilation step is done only once on code that can be evaluated
many times. In practice, Silk 2.0 is about twice as fast as 1.0.

/** Evaluate an object x in an environment env. **/

public static Object eval(Object x, Environment env) {

return Code.eval(Code.toCode(x,env), Frame.EMPTY);

}

The main design issue is how to provide tail recursion. This is done by letting Code.eval()
return either an Object or a Code, and iterating if a Code is returned.

static Object eval(Object expr, Frame f) {

if (expr instanceof Code) {

expr = ((Code)expr).eval(f);

while (expr instanceof Code)

expr = ((Code)expr).eval(Frame.EMPTY);

}

return expr;

}

Thus the inner loop of the interpreter is replaced by a method dispatch. Currently, a
relatively small number of Code inner classes are de�ned. Further performance can be
gained by generating more re�ned classes to handle common special cases more e�ciently.

6.3 Skij

Skij is a Scheme advertised as a scripting extension for Java. It is similar in capabilities to
Silk 1.4, but has more extensive Java support including (peek) and (poke) for reading and
writing slots, (invoke) and (invoke-static) for invoking methods, and (new) for constructing
new instances of a Java class. The operations (new), (invoke), and (invoke-static) are
generic. The appropriate Java method is looked up at runtime based on all of its arguments.
While Silk users have experimented with similar generic operations, they are currently not
part of the standard distribution.

Many procedures are provided in Scheme code, some of which simply invoke an under-
lying Java primitive.

6.4 Jaja

Jaja is a Schemebased on the Christian Queinnec's wonderful book "Lisp in Small Pieces"[11].
It includes a Scheme to Java compiler written in Scheme, because it requires only 1/3 the
code of a Java version. Compared to Silk, Jaja is written in a more object oriented style.

Like Silk, Jaja uses a super class (Jaja in Jaja, and SchemeUtils in Silk) to provide globals
and utility functions. Unlike Silk, in Jaja, each Scheme type has one or more Java classes
de�ned for it. Also, in Jaja, nil is represented as an instance of the class EmptyList, while
in Silk it is represented by null. All Jaja objects are serializable.

6.5 Kawa

Kawa is an ambitious Scheme implementation. It includes a Scheme to Java byte code
compiler. Each function becomes a Java class compiled and loaded at runtime. It is the
largest of the Scheme-in-Java implementations.

7 Future

In this section we outline several extensions we hope will appear in future versions of SILK.
They should enhance the power of LISP/Java integration.

7.1 Generic functions

As described above, the (constructor) and (method) procedures provide access to Java
methods. However, these methods are not generic. This means that the two get() methods
for Java's Field and Hashtable classes must be named apart:

(define getFieldValue

(method "get" "java.lang.reflect.Field" "java.lang.Object"))

(define getHashtable

(method "get" "java.util.Hashtable" "java.lang.Object"))

A more natural solution is to allow (get) to be a generic function, as in Common Lisp.
The appropriate method to invoke would be chosen based on the argument types at runtime.
The Skij Scheme implementation already has this capability. We have experimented with
such generic functions based on Tiny CLOS. One important extension is that both Java
methods and Scheme methods can be added to a generic function.

7.2 Compilers

Compiling Scheme to Java is essential for increasing performance of Scheme code. The Jaja
and Kawa Scheme implementations already provide interesting compiling capabilities. We
have experimented with a simple compiler that is essentially a partial evaluation of the Silk
1.4 interpreter. Given a �le of Scheme de�nitions it produces source code for an equivalent
Java class. The class can then be compiled and used in place of the Scheme code. This
simple compiler increased performance by a factor of two and reduced applet loading time.

7.3 Meta Scripting

A simpler variant of a compiler is to write Scheme procedures that generate new Java
classes from old ones. Since SILK has access to the re
ective description of a Java class, it
can be used as a template to generate a new class with additional capabilites. For example,
supose we wanted to trace the get() and put() methods of a Hashtable. The form:

(define-class ("myPackage" "myHashtable")

(extends "java.util.Hashtable")

(methods

(trace "get")

(trace "put")))

could produce a new subclass with this capability:

import trace.Trace;

package myPackage;

public class myHashtable extends java.util.Hashtable {

public Object get(Object key) {

Trace.print(this + "get(" + key + "): ")

Object result = super.get(key);

System.out.println(result);

return result;

}

public void put(Object key, Object value) {

Trace.print(this + "put(" + key + ", " + value + ")");

super.put(key, value);

}

}

In SILK, the class Primitive that implements about 150 Scheme primitives can be
automatically generated in this fashion. Each primitive is described by a one line Scheme
form. The forms are then woven together to construct the Java code for the Primitive class.
The necessary bookkeeping and glue code, described above, is generated automatically.
This primitive information can also be used by a LISP-to-Java compilier.

7.4 Network citizenship and Java integration

With Java as the implementation language, there are many opportunites that SILK can take
advantage of in the future. These include Thread support, Serialization, and Networking.

References

[1] Kent Beck and Erich Gamma, Test-infected: Programmers love writing tests, Java Report,
Vol 3, No. 7, p.51 - 56, 1998.
http://members.pingnet.ch/gamma/junit-10.zip

[2] Per Bothner, Kawa, the Java-based Scheme System
http://www.cygnus.com/ bothner/kawa.html

[3] Tim Hickey (Project Leader) JLIB: A Declarative GUI-building library for SILK
http://www.cs.brandeis.edu/ tim/Packages/jlib/jlib.html

[4] Aubrey Ja�er R4RS Scheme test
ftp://ftp-swiss.ai.mit.edu/pub/scm/r4rstest.scm

[5] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised(5) Report on the
Algorithmic Language Scheme. 1998.
www.math.grin.edu/courses/Scheme/r5rs-html/r5rs toc.html

[6] Richard A. Kelsey, and Jonathan A. Rees, A Tractable Scheme Implementation, Lisp and
Symbolic Computation, 7, 4, p. 315-336, 1994.

[7] Peter Norvig Paradigms of Arti�cial Intelligence Programming: Case Studies in Common
Lisp Morgan Kaufmann, 1992.

[8] Peter Norvig (Project Leader) SILK: Scheme in Fifty K
http://www.norvig.com/SILK

[9] Michael Travers Skij, IBM alphaWorks archive
http://www.alphaworks.ibm.com/formula/Skij

[10] Christian Queinnec JaJa: Scheme in Java
http://www-spi.lip6.fr/ queinnec/WWW/Jaja.html

[11] Christian Queinnec Lisp in Small Pieces, Cambridge University, Cambridge, 1996.

