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The problem of deciding what is implied by a written text. of “reading between 
the lines” is the problem of text Inference. To extract proper inferences from a 
text requires a great deal of generol knowledge on the port of the reader. Past 
approaches have often used a “strong method” tuned to process a particular kind 
of knowledge structure (such OS a script, or a plan). The alternative is a “weak 
method” which is applicable to a variety of knowledge structures. Just such a 
method is proposed here. one which recognizes six very general classes of infer- 

ence. These classes ore not dependent on individual knowledge structures, but 
instead rely on patterns of connectivity between concepts. Patterns are dls- 
covered, and inferences are suggested. by Q process of marker passing between 
concepts. 

1. THE PROBLEM OF INFERENCING 

The reader of a text is faced with a formidable task: recognizing the individ- 
ual words of the text, determining how they are structured into sentences, 
and deciding the explicit meaning of each sentence in the face of ambiguities. 
On top of that, the reader must also make inferences about the likely im- 
plicit meaning of each sentence, and the implicit connections between sen- 
tences. An inference is defined here to be any assertion which the reader 
comes to believe to be true as a result of reading the text, but which was not 
previously believed by the reader, and was not stated explicitly in the text. 

It is important to distinguish between inference and deduction. Infer- 
ences need not follow logically or necessarily from the text; the reader can 
jump to conclusions that seem likely but are not 100% certain. Conversely, 
there can be assertions which necessarily follow from a text (are deducible 
from the text), but which are not inferred. For example, either Fermat’s last 
theorem or its negation necessarily follows from any text on elementary 
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number theory, but so far no reader has been clever enough to infer which. 
Given this characterization, it is clear that any proposition whatsoever could 
be inferred from a given text. To avoid this unhappy situation, a more re- 
stricted characterization of inference must be given. This article will be con- 
cerned with proper iQerences, inferences which satisfy the following three 
criteria: 

1. They are plausible; not only is it possible for a reader to believe them, 
but it seems likely that the average reader would. 

2. They are relevant, in that they serve to tie together concepts mentioned 
in the text. 

3. They are easy; they seem to be made without conscious effort. 

To understand a text, a reader must make the proper inferences, and avoid 
making improper inferences. 

There has been much discussion in recent years on the best paradigm to 
approach this problem. Natural language has potentially unlimited expres- 
siveness; it can be used to say almost anything. This suggests that a lan- 
guage-understanding system should be based on a general weak method, 
one which is capable of stringing together an arbitrary number of inferences 
to arrive at an interpretation. For example, one could adopt the metaphor 
of “understanding as deduction” and use a general purpose theorem prover. 
Such an approach would be near complete, but would be intractable for 
large problems. 

On the other hand, it has long been recognized that (1) real-world knowl- 
edge plays an important role in language understanding, and (2) one should 
be concerned not with all possible texts, but rather with the restricted range 
of texts that actually are expressed. This suggests that it might be appropri- 
ate to incorporate some special purpose strong methods to recognize com- 
mon patterns, and bring appropriate knowledge to bear. This approach 
would necessarily limit the number of inferences and thus the interpreta- 
tions that could be made. The hope is that the interpretations could be 
limited to just those that are most likely to be expressed. 

Many of the early (c. 1970s) text-understanding systems stressed this 
strong-method approach. There was a tendency to create new algorithms 
every time a new knowledge structure was-proposed. For example, from the 
Schank school, one program, MARGIE, (&hank, 1973) handled single- 
sentence inferences. Another program, SAM, (Cullingford, 1978) was intro- 
duced to process stories referring to stereotypical situations or scripts, Yet 
another program, PAM, (Wilensky, 1978) dealt withplan/goal interactions. 
But in going from one program to the next a new algorithm always replaced 
the old one; it was not possible to incorporate previous results except by re- 
implementing them in the new formalism. It was not just that SAM “knew” 
something about scripts-SAM was built exclusively to process scripts, and 
only incidentally could it do other types of inferences. Similarly, PAM had 
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a control structure that was built to track character’s goals and explain them 
in terms of plans and themes. Again, nongoal-related inferences were handled 
only incidentally. A notable attempt to combine knowledge about scripts, 
plans, and various other sources was made by Dyer (1982) in the BORIS 
program. In this system, different knowledge sources were considered, but 
only one at a time; there was no capability to combine evidence from differ- 
ent sources in order to make a final interpretation. BORIS was a production 
system with a large number of very specific rules (and some more general 
ones). The difficulty was in getting the rules to interact with each other, and 
in predicting the result of adding a new rule, or changing an existing one. 

Because of these difficulties, the emphasis in text understanding has 
shifted in recent years towards weak-method approaches. Charniak and 
Goldman’s (1988) WIMP, Hobbs, Stickel, Martin, and Edwards’ (1988) 
TACITUS, Pollack and Pereira’s (1988) Candide and Stallard’s (1987) work 
have all taken this tack. In each case, there is an emphasis on solving vari- 
ous problems posed by the text, such as promotional reference, indefinite 
noun phrase resolution, quantifier scope, and discovering metonymic rela- 
tions. The solution is constrained both by the text itself and by available 
world knowledge, which is coded in terms of probabilistic or nomnonotonic 
axioms. However, natural language texts are almost always ambiguous to 
some extent, so a unique solution to the constraint problem cannot be 
achieved. Instead, a least cost or most likely interpretation must somehow 
be computed, using heuristics that combine evidence from various sources 
while limiting the number of choices considered. Charniak and Goldman 
use probabilities throughout the process of interpretation, Hobbs et al. use 
a combination of cost functions and probabilities, Stallard uses a more ad 
hoc collection of heuristics, and Pollack and Pereira use strict composition, 
but with nonmonotonic interpretation rules. In each case, the interpretation 
rules are clearly specified, but what is not clear is the complexity of the 
resulting algorithm. Deduction is an intractable problem, and adding the 
uncertainty of doing abductive inference rather than deduction often makes 
things worse, not better. Hobbs et al., for example, point out that their 
algorithm performs very slowly when it is allowed to consider all possibili- 
ties, but when it is limited to searching for local interpretations first, it can 
be stuck with sub-optimal global interpretations. Realizing this problem, 
Pollack and Pereira describe an architecture that makes it easy to experi- 
ment with different evaluation schemes. 

This article can be seen as a case study, an experimental point on the con- 
tinuum from inadequate to intractable algorithms. It attempts to see how 
far one can go using a weak method with strict bounds on the amount of 
processing allowed. The processing is bounded in two ways. First, suggested 
inferences are found through a marker-passing mechanism which would 
operate in constant time on a highly parallel machine, and is efficient even 
in serial implementations, because of the new technique of marker state 
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propagation. Second, the suggested inferences are evaluated in a predeter- 
mined order which attempts to account for useful interactions of con- 
straints, without having to consider all possible combinations of inferences 
exhaustively. Thus, like Hobbs et al., some global interpretations will be 
missed, but an attempt will be made to show that the trade-off is in some 
sense worth it. 

The algorithm is intended to describe how proper inferences might be 
quickly computed, and is not intended to discover all types of inferences. 
Rather, a technique is presented for quickly finding a partial interpretation, 
which could then be used as input for further processing stages. 

As an example of the scope of the problem, consider the following text, 
excerpted from a book of fairy tales (Anonymous, 1972, p. 80). 

(1) In a poor fishing village built on an island not far from the coast of China, 
a young boy named Chang Lee lived with his widowed mother. Every 
day, little Chang bravely set off with his net, hoping to catch a few fish 
from the sea, which they could sell and have a little money to buy bread. 

A reader of text (1) should be able to make proper inferences such as the 
following: 

@a) There is a sea which is used by the villagers for fishing, surrounds the 
island, and forms the coast of China. 

(2b) Chang intends to trap fish in his net, which is a fishing net. 
(2~) The word which in which they could sell refers to the fish. 
(2d) The word they in they could sell refers to Chang and his mother. 

The reader must also avoid making improper inferences. A representative 
set of improper inferences for (1) is listed below: 

(3a) The villagers fish on a river in the middle of the island. The island is on a 
lake which is near the coast. 

(3b) Chang will use the net, which is a butterfly net, as a deposit on a motor 
boat to go out fishing. 

(3~) The word which in which fhey could sell refers to the sea. 
(3d) The word they in they could sell refers to the fish. 
(3e) The square root of 169 is 13. 
(3f) Chang has a grandmother (who is perhaps deceased). 
(3g) Chang lived with his mother. 
(3h) Chang is wearing blue pants. 

Most readers find it difficult to take seriously the inferences in (3a-d). 
They often have to go back to the text to see that (3a-d) are indeed possible 
at ail; that they are not explicitly contradicted by the text. In fact, each of 
(3a-d) is consistent with everything stated in the text, they are just less 
plausible than the corresponding inferences in @a-d). 

In (3b) the motor boat seems irrelevant, and (3a) is a convoluted example 
that would fail on both the relevance and easiness criteria. While (3e) is 
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highly plausible, in fact is lCKVJ7o certain, it is completely irrelevant. Although 
(3f) refers to a character in the story, it still is not a relevant inference be- 
cause it does not tie together concepts from the text; it just adds peripheral 
information. One could go on from (3f) and infer that Chang’s grandmother 
had a grandfather, and that he had a pancreas, and that this pancreas secreted 
insulin, and so on. In each case we have a highly plausible inference which is 
connected in some way to either the text itself or a previous inference. How- 
ever, it is not enough for a fact to be inducible, or even deducible, from the 
text; (3e-f) are not proper inferences because the connection between them 
and the text fails to add anything to the interpretation of the story. Example 
(3g) is not considered an inference by definition here because it was stated 
explicitly in the text. 

Text (1) was taken from a book where it was accompanied by some pic- 
tures. The illustrator presumably made inference (3h), because that is how 
Chang is depicted; (3h) will be referred to here as an idiosyncratic inference. 
People bring many such inferences to the interpretation of a text, but are 
still able to distinguish idiosyncratic inferences from proper ones. In order 
to draw a picture, it was necessary to choose some attire for Chang, but 
another choice, say, brown shorts, would have done as well. On the other 
hand, the picture in question also showed Chang with a fishing net; here a 
butterfly net could not have been substituted. The reader is aware that the 
author of the text intended for him to infer that the net is a fishing net, but 
did not have any intention one way or the other with regards to the color of 
Chang’s clothes. Clark (1975) makes a similar distinction, speaking of 
authorized and unauthorized inferences. 

There is an implicit contract between the author and reader wherein the 
author agrees to explicate, enough of the situation so that the reader, by 
searching for proper inferences, can recover the rest of the information and 
make sense of the text. In a perfectly structured text there will always be 
easy, plausible connections between each pair of adjacent sentences. When 
these connections are missing, or when inferences prove to be incorrect, it is 
usually a signal that the writer is being humorous, ironic, mysterious, has a 
different view of the world, or is just being confusing. Indeed, much of 
what makes texts interesting is the intentional flaunting of this implicit 
contract. 

Note that plausibility is a relative term. In the phrase which they could 
sell from (l), it is more plausible that which refers to the fish than to the sea, 
and that they refers to Chang and his mother rather than the fish. When 
faced with a choice of possible referents, it is possible to decide which is 
better using default assumptions like the actors of selling events should be 
people, and the object of selling events should be products which are con- 
ventionally bought andsold. When faced with no good referent, sometimes 
these assumptions have to be violated. Given sentence (4) below, the reader 
would be forced to infer that which refers to the sea and they refers to the 
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fish, even though this constitutes a very unusual event in the real world. 
Thus, it is easier to determine the better of two proposed interpretations of 
a sentence than it is to decide if any single interpretation is acceptable. In 
other words, there appears to be no threshold of acceptability in examples 
like these. 

(4) The fish hoped to acquire a sea which they could sell. 

It should be clear by this point that making proper inferences requires a 
great deal of knowledge. The reader must know the meanings of individual 
words, as well as the grammatical rules of the language. In addition, the 
reader must have specific world knowledge about the subject matter. For 
text (l), this would include knowledge of spatial relations (in, on, near); 
geography (village, island, coast, sea, China); familial relations (boy, mother, 
widow); commercial transactions (buy, sell, have, money), as well as other 
sources of knowledge. Collectively this will be called common sense knowf- 
edge, to distinguish it from expert and grammatical knowledge. Without 
this knowledge, one would be unable to decide among alternative interpre- 
tations of the text. For example, inference (2b) above, Chung intends to 
trap fish in his net, comes from a knowledge of nets, not from the structure 
of the input sentence. If the sentence had been (5) instead, the inference that 
Chang intends to trap fish in his dog would not be made. 

(5) Chang set off with his dog, hoping to catch a few fish. 

2. THE INFERENCING ALGORITHM 

An inferencing algorithm in a program called FAUSTUS (Fact Activated 
Unified STory Understanding System) has been implemented. A preliminary 
version of this system was described in Norvig (1983a), and a complete 
account is given in Norvig (1986). The program is designed to handle a 
variety of texts, and to handle new subject matter by adding new knowledge 
rather than by changing the algorithm or adding new inference rules. Thus, 
the algorithm must work at a very general level, not by knowing a lot of 
specific inferencing tricks or rules. The goal of the algorithm can be stated 
succinctly as follows: 

Make those and oniy those inferences that serve as a direct connection tying 
together two concepts in the construal of the text, such that the connection is a 
simple one, and is the most plausible such connection. 

“Construal” means the set of propositions derived from the parse of the 
text, augmented by the inferences that have been accepted. The marker- 
passing algorithm assures that all direct connections will be found, and that 
the corresponding inferences will be suggested. The suggestion evaluation 
mechanism then attempts to pick the most plausible subset of these suggested 
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inferences, such that no accepted inference contradicts another. This is not 
a complete theory of understanding, as there will be much that a reader can 
take from a text by making nondirect connections. 

The system is most similar to Alterman’s (1985) NEXUS. The difference 
is that NEXUS concentrated on the problem of enumerating a small class of 
connecting relations (class/subclass, sequence/subsequence, coordinate, ante- 
cedent, precedent, consequent, and sequel). FAUSTUS, on the other hand, 
concentrates on the connections themselves, and how chains of connections 
come together to suggest inferences. In simplest terms, the FAUSTUS algo- 
rithm is to read the input, translate it into a semantic network representa- 
tion, and pass markers from each concept in the semantic translation to 
neighboring concepts in the network. When two markers reach the same 
concept, an inference may be suggested. The exact inference depends on the 
path taken by the two markers on their way to the collision point. The path 
(and hence the inference) is characterized solely in terms of the primitive 
links traversed, not by the domain-level concepts visited. This is what makes 
FAUSTUS’ inference mechanism simple, yet extendible to an open-ended 
set of domain relations. After passing markers and suggesting inferences, 
the final step is to evaluate each suggested inference, resolve conflicts and 
accept each inference with no conflicting evidence. The algorithm can be 
broken into steps as follows: 

Step 0: Construct a knowledge base defining general concepts like 
actions, locations, and physical objects, as well as specific concepts 
like bicycles and tax deductions. The same knowledge base is applied 
to all texts, whereas Steps l-5 apply to an individual text. 

Step 1: Construct a semantic representation of the next piece of the 
input text. Occasionally the resulting representation is vague, and 
FAUSTUS resolves vagueness in the input using two kinds of non- 
marker-passing inferences. However, the parser cannot produce a 
genuinely ambiguous representation. The lack of interaction between 
parser and inference mechanism is a serious problem, but this article 
does not address the problem, nor the details of the parsing process. 

Step 2: Pass markers from each concept in the semantic representation 
of the input text to adjacent nodes, following along links in the seman- 
tic net. Each marker points back to the marker that spawned it, so 
the marker path can always be traced from a given marker back to 
the original concept that initiated marker passing. Each marker also 
has a marker state, which controls which links it will spread across, 
and prevents markers from spreading indefinitely. 

Step 3: Suggest inferences based on marker collisions. When two or 
more markers are passed to the same concept, a marker collision is 
said to have occurred. For each collision, look at the sequence of 
primitive link types along which markers were passed. This is called 
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the path shape. If it matches one of six predefined path shapes then 
an inference is suggested. Suggestions are kept on an agenda, rather 
than being evaluated immediately. Note that inferences are suggested 
solely on the basis of primitive link types, and are independent of the 
actual concepts mentioned in the text. The power of the algorithm 
comes from having the right set of suggestions (and of course the 
right predefmed path shapes to implement the suggestions). 

Step 4: Evaluate potential inferences on the agenda. The result can be 
either making the suggested inference, rejecting it, or deferring the 
decision by keeping the suggestion on an agenda. If there is explicit 
contradictory evidence, an inference can be rejected immediately. If 
there are multiple potential inferences competing with one another 
(as when there are several possible referents for a pronoun), and none 
of them is more plausible than the others, the decision is deferred. If 
there is no reason to reject or defer, then the suggested inference is 
accepted. 

Step 5: Repeat Steps l-4 for each piece of the text. 
Step 6: At the end of the text there may be some suggested inferences 

remaining on the agenda. Evaluate them to see if they lead to any 
more inferences. 

The knowledge base is modeled in the KODIAK representation language, a 
semantic net-based formalism with a fixed set of primitive links. A simpli- 
fied version is presented for expository reasons; see Wilensky (1986) or 
Norvig (1986) for more details. KODIAK resembles KL-ONE (Bra&man & 
Schmolze, 1985), and continues the renaissance of spreading activation 
approaches spurred by Fahlman (1979). 

3. AN ANNO’IATEL3 EXAMPLE 

This example shows the inferences that are generated by FAUSTUS in the 
course of processing text (1). FAUSTUS does not receive the text directly as 
input, instead it is passed a semantic representation of each input sentence; 
these are shown below as capitalized expressions in parenthesis preceded by 
“Rep:” 

[l] Input: In a poor shlng village built on an island 
near the coast of Chlna, 

Rep: (VILLAGE (MOD = FISHING) (MOD = POOR) 
(LOCATION = A ISLAND) WHERE 
(BEING-AT (FIGURE=THE VILLAGE) 

(GROUND = A ISLAND)) 
(BEING-NEAR (FIGURE=THE VILLAGE) 

(GROUND = A COAST (OF= CHINA))) 
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Inferring: a MOD of the VILLAGE is probably the PREDOMINANT- 
OCCUPATIOM 

because the FISHING fits It best. 
This is a RELATION-CONCRETION Inference. 

Inferring: the VILLAGE Is a FISHING VILLAGE. 
This is a CONCRETION Inference. 

The input says that the village is modified by the concept “fishing” in some 
unspecified manner. The program determines that fishing should be inter- 
preted as the predominant occupation of the village. It is able to do this 
because of a collision between two marker paths that begin at “village” and 
end at “job.” One path follows the links that says a village is a kind of 
polity, polities can have a predominant occupation, occupations are jobs of 
some kind, and fishing can be a job. The other half goes from the village, 
which has a mod relation, which is filled by the fishing activity, which is a 
kind of fishing, which can be a job. Associated with a path of this shape is 
the suggested inference that “mod” should be interpreted as the more spe- 
cific relation, in this case “predominant-occupation.” Once this assumption 
is made, the village can be further classified as a “fishing-village.” Note 
that the knowledge base contains many other facts about fishing villages, 
such as the fact that they are usually near water. These facts are not con- 
sidered, because there are no collisions involving them, and hence no sug- 
gestions. Both these inferences are called concretion inferences, because 
they take an abstract representation (like “mod”) and interpret it as a more 
concrete one (like “predominant-occupation”). 

Inferring: a MOD of the VILLAGE is probably the AVERA6DlNCOME 
because the POOR flts It best. 
This Is a RELATION-CONCRETION Inference. 

Rejecting: a MOD of the VILLAGE is probably the OVERALL-QUALITY 
because another possibility, AVERAGE-INCOME, Is more specific. 

Determining how “poor” modifies ‘Wlage” is difficult not only because 
the modifying relation is vague, but also because “poor” is ambiguous 
between “low in wealth” and “low in overall quality.” The knowledge base 
says that people have incomes, polities have average incomes, and objects in 
general can have an overall quality level. Markers from the instance of 
“poor” in the input are therefore propagated to the concepts for people, 
polities, and things. Markers propagating from “village” reach polity and 
thing, and thus there are marker collisions at those two concepts. Each 
collision suggests an inference, but when FAUSTUS tries to evaluate the 
first of these two, it notices there is another inference competing with it;in 
the sense that accepting one of the two means rejecting the other. The evalu- 
ation rule for choosing between competing suggestions says to accept the 
most specific inference. In this case, the constrainer of average-income is 
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“polity,” which is more specific than the constrainer of overall-quality, 
which is “thing.” Thus, the average-income interpretation is accepted, and 
the overall-quality interpretation is rejected. 

Notice that the possibility of interpreting “poor” as referring to income 
rather than average-income was never considered, because there was no per- 
son mentioned in the input, and thus no marker collision that would suggest 
that interpretation. 

Another possible interpretation is that “poor” modifies “fishing” rather 
than “village.” The whole phrase would then mean “a village where the fish- 
ing was not good.” This interpretation cannot be considered by FAUSTUS 
because the input it gets-the output of the parser-has already specified 
the association between modifiers. The parser can return a representation 
that is ambiguous as to how something is modified, but it cannot return a 
representation that is ambiguous as to what modifies what. If FAUSTUS 
were better integrated with the parser, it could try both possibilities in turn. 
As it stands now, the parser must just guess at the proper parse, based on 
the subcategorization of the individual lexical items and on attachment 
preferences. 

inferring: the CHINA is viewed as a GEOGRAPHICAL-ENTITY. 
This is a VIEW-APPLICATION Inference. 

inferring: a OF of the COAST is probably the LAND-BORDER 
because the CHINA fits it best. 
This is a RELATION-CONCRETION inference. 

Here we see a view application inference. The knowledge base defines China 
as a country, which is a political entity. However, political entities cannot 
have coasts; only geographical entitites can. Part of the knowledge base is a 
general mapping, called a view, stating that political entities can be viewed 
as the geographical location they have jurisdiction over. So FAUSTUS in- 
fers that in this situation, China is being viewed as a geographical entity. 

‘After that is done, the ambiguous modifier “of’ in the phrase “coast of 
China” can be resolved: Coasts have two components, a land-border and a 
water-border; China is known to be a land-mass, and thus can only fill one 
of those roles. 

inferring: there is a BODY-OF-WATER such that 
it is the LOCATION of the FISHING and 
it is the SURROUNDER of the ISLAND. 
This is a DOUBLE-ELABORATION inference. 

inferring: there is a BODY-OF-WATER such that 
it is the LOCATION of the FISHING and 
it is the WATER-BORDER of the COAST. 
This is a DOUBLE-ELABORATION inference. 
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Here are seen the first inferences that create something new, rather than just 
further specifying some ambiguous input. Because of this added complica- 
tion, this inference will be explained in more depth. Figure 1 shows a small 
portion of the knowledge base, which was constructed before processing the 
text, as Step 0 of the algorithm. The concepts in the knowledge base are con- 
nected by links of a fixed set of primitives: D for the dominate (or a-kind-of) 
and I for the instance (or ISA) taxonomic relations, S for a slot in a frame 
(or equivalently a relation on a concept), and C for a type constraint on a 
relation. There are a few more primitive link types that will be explained 
later. Figure 2 shows how markers from fishing.1 and island.1, (two con- 
cepts in the representation of the first sentence) follow along paths in the 
semantic network and collide at the concept “body-of-water.” Figure 3 
shows the inference that was suggested by this collision, and adopted above. 

Although no body of water was explicitly mentioned in the text, concepts 
that implicitly refer to a body of water were mentioned. In particular, there 
are three marker paths, starting at the fishing, the island, and the coast, that 
all collide at the concept body-of-water. Each of these is of the -I-S-C- 
path shape. The three paths considered in pairs result in three collisions, 
and each collision suggests an inference. These are &led double-elaboration 
inferences because they elaborate on two concepts at the same time by relat- 
ing them to a third. Two of the suggested inferences are accepted, and lead 
to the results printed above. The third suggestion was that the body-of-water 
is the surrounder of the island and the water-border of the coast. This sug- 
gestion is now redundant because both of its components have already been 
adopted. 

[2] Input: a young boy named Chang Lee lived with his widowed 
mother 

Rep: (INHABITING (EXPERIENCER = A BOY (MOD = YOUNG-AGE) 
(NAMED = CHANG)) 

(WITH = A WIDOW A MOTHER (OF = THE BOY)) 
(LOCATION =THE VILLAGE)) 

Inferring: the EXPERIENCER of the INHABITING must be the 
INHABITER 

This Is a RELATION-CLASSIFICATION inference. 

This is an example of a nonmarker-passing inference. The input describes 
an inhabiting state with the experiencer being the boy. The definition of 
inhabiting in the knowledge base says that it is a kind of “being-at” state, 
with an inhabiter that plays the role of the experiencer of the state and the 
figure of the being-at. In other words, by definition any experiencer of an 
inhabiting must be an inhabiter. FAUSTUS recognizes this fact and prints 
the message. It is a nonmarker-passing inference because it was deduced 
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from the definition of inhabiting, not by a search procedure involving 
markers. 

Inferring: a WITH of the INHABITING is probably the CO-INHABITER 
because the MOTHER fits it best. 
This is A RELATION-CONCRETION inference. 

Inferring: a OF of the MOTHER is probably the OFFSPRING 
because the BOY fits it best. 
This is a RELATION-CONCRETION inference. 

Inferring: the BOY must be a SON, because it is a OFFSPRING 
This is a RELATION-CONSTRAINT inference. 

inferring: the INHABITING is a FAMILY-LIVING. 
This is a CONCRETION inference. 

Here there are two more cases of resolving ambiguous modifiers via concre- 
tion inferences. A “with” can mark an accompanier, an instrument, or a 
manner, but in this case there is a very specific type of accompanier, the co- 
inhabiter, that is compatible with “with.” The mechanism for discovering 
this is a collision at “inhabiting” between a marker path originating at the 
instance of inhabiting, and the path originating at the instance of with. The 
path goes through the concept accompanier, and the suggested inference is 
that the “with” is actually an instance of accompanier. Once it is established 
that the inhabiting situation holds with the mother and son as participants, 
then it can be inferred that the inhabiting is an instance of family-living, a 
more specific situation known in the knowledge base. 

[3] Input: Every day, little Chang set off with his net, 

Rep: (TRAVELING (ACTOR = CHANG (MOD = SMALL-SIZE)) 
(WITH = A NET (OF = THE BOY))) 

Inferring: the ACTOR of the TRAVELING must be the TRAVELER 
This is a RELATION-CLASSIFICATION inference. 

inferring: a WITH of the TRAVELING is probably the ACCOMPANIER 
because the NET fits it best. 
This is a RELATION-CONCRETION inference. 

In this case, there is no specific information on how “with a net” could 
modify an instance of traveling, so the default, the “accompanier case,” is 
selected. Note that the phrase “every day” is ignored completely in the 
semantic translation. FAUSTUS does not have a sophisticated model of 
time or of habitual action. 

[4] input: hoping to catch a few fish from the sea, 
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Rep: (WANTING EXPERIENCER = THE BOY) 
(WANTED = CATCHING (ACTOR =THE BOY) 

(PATIENT = SOME FISH) 
(SOURCE = THE SEA))) 

Inferring: the EXPERIENCER of the WANTING must be the WANTER 
This is a RELATION-CLASSIFICATION Inference. 

Inferring: the CATCHING must be a GOAL-SITUATION, because it is 
a WANTED 

This Is a RELATION-CONSTRAINT inference. 

Inferring: the CATCHING is a CATCHING-FISH. 
This is a CONCRETION Inference. 

Inferring: the SEA refers to the BODY-OF-WATER. 
This Is a REFERENCE Inference. 

Inferring: the NET is a INSTRUMENT of the CATCHING-FISH. 
This is a SINGLE-ELABORATION inference. 

Inferring: the NET must be a FISHING-NET, 
because it is a CATCHING-FISH-INSTRUMENT 
Thls Is a RELATION-CONSTRAINT Inference. 

The first thing done here is to make the concretion inference that a catching 
action where the patient is some fish is actually an instance of catching-fish. 
This is detected because of a marker collision between one marker that starts 
at the fish and goes through fish to catching-fish and then up to catching, 
and another marker that starts at the fish, goes to the specific instance of 
catching, and up to the general concept catching. The action catching-fish 
is more specific than catching, and includes other information besides the 
fact that fish are caught. For instance, it is known that fish can be caught 
either in a net or on a line. Another connection is found by a marker colli- 
sion at the concept trapping-device. One marker goes from the net up the 
hierarchy to trapping-device. The other marker starts at the catching, goes 
to the slot catching-instrument (the instrument of a catching action) and on 
to that slot’s constrainer, trapping-device. Note that the two markers did 
not originate at the same time; such an inference serves to tie sentences 
together. After it is asserted that the net is the instrument of the catching, a 
nonmarker-passing, relation-constraint inference notices that the net can 
only satisfy the constraint on instruments of catching-fish if it is interpreted 
as a fishing net. 

[5] Input: which they could sell 

Rep: (SELLING GOAL (ACTOR =THEY) (PATIENT= WHICH)) 

Inferrlng: the ACTOR of the SELLING must be the SELLER 
Thls Is a RELATION-CLASSIFICATION inference. 
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Inferring: the PATIENT of the SELLING must be the THING-SOLD 
This is a RELATION-CLASSIFICATION inference. 

Inferring: ‘THEY’ refers to the FAMILY. 
This is a REFERENCE inference. 

Rejecting: ‘THEY’ refers to the FISH. 
because the FISH is not a SENTIENT-AGENT. 

FAUSTUS represents the word “they” as a group of unspecified nature. So 
markers are passed from the representation for “they” up the hierarchy to 
the concept group. Other marker paths that collide at group originate at the 
representation for the fish stated in input [4], and the family inferred in in- 
put [2]. These latter two paths collide with the first one at group, each sug- 
gesting a possible referent for “they. ” The reference is resolved because fish 
are not considered capable of performing a selling action. Note that if the 
program had not previously inferred the existence of the family (which was 
never mentioned explicitly), this inference could not be made. 

Inferring: ‘WHICH’ refers to the FISH. 
This is a REFERENCE inference. 

The reference inference for the word “which” has many more possible 
referents. Ten other collisions (not shown) each suggest a referent, and the 
evaluation algorithm must choose between them. Several possibilities can be 
ruled out because they cannot play the role of thing-sold, a role that the 
word “which” is explicitly filling. Of the remaining possibilities, exactly 
one, the fish, was more recently mentioned than all the others. Thus, it is 
selected as the referent, and the others are rejected. 

Inferring: there is a HAVING such that 
It Is a RESULT of the CATCHING and 
it is a PRECONDITION of the SELLING 
This is a DOUBLE-ELABORATION inference. 

Here we have the introduction via a double elaboration inference of a new 
“having” state, wherein the family has posession of the fish. This state was 
inferred because it mediates between two other actions: It is the result of 
catching the fish, and is a precondition for selling them. 

[6] Input: and have a little money 

Rep: (HAVING GOAL (EXPERIENCER =THE GROUP) 
(PATIENT= A MONEY)) 

Inferring: the EXPERIENCER of the HAVING must be the HAVER 
This is a RELATION-CLASSIFICATION inference. 

Inferring: the PATIENT of the HAVING must be the HAD 
This Is a RELATION-CLASSIFICATION inference. 
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Rejecting: the HAVING mentioned in [S] is a PRECONDITION of the 
SELLING. 

because of a mismatch. 

Inferring: the HAVING mentioned in [S] is a RESULT of the SELLING. 
This is a SINGLE-ELABORATION inference. 

Inferring: the MONEY is the PRICE of the SELLING. 
This is a SINGLE-ELABORATION inference. 

Here another instance of “having” is explicitly mentioned. FAUSTUS 
finds two single-elaboration connections between having and selling, but 
since the selling action above already has its precondition met, this one can 
only be the result. 

[7] Input: to buy bread. 

Rep: (BUYING GOAL (ACTOR =THE GROUP) (PATIENT= BREAD)) 

Inferring: the ACTOR of the BUYING must be the BUYER 
This is a RELATION-CLASSIFICATION Inference. 

Inferring: the PATIENT of the BUYING must be the THING-BOUGHT 
This is a RELATION-CLASSIFICATION inference. 

Inferring: the BUYING is a PRECONDITION of the HAVING 
mentioned in [S]. 

This is a SINGLE-ELABORATION inference. 

Inferring: the MONEY is the PRICE of the BUYING. 
This is a SINGLE-ELABORATION inference. 

Single-elaboration paths have found that the money can fill the price role in 
both the buying and selling. A more realistic interpretation might be that 
the money goes into the family cache, and is used a little at a time to buy 
bread, but FAUSTUS assumes that exactly the same money that was received 
from selling the fish is then used to buy bread. 

4. EVALUATING THE ALGORITHM 

One way to evaluate the FAUSTUS system is to see how well the inferences 
generated by the algorithm satisfy the criteria for proper inferences. Recall 
that the first implicit criterion was nonexplicitness. The algorithm avoids 
making inferences that were explicitly mentioned in the text by definition: 
No such inference would be suggested. The three other criteria were rele- 
vance, easiness, and plausibility. 

First, the inferences are guaranteed to be relevant to at least two concepts 
in the model of the text, because inferences are only triggered when colli- 
sions occur. In other words, relevance is being defined by saying that an 
inference is relevant if and only if it is related (by marker paths) to two or 
more concepts in the model of the text. 
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The second criterion is easiness. This is guaranteed by designing the 
allowable marker paths so that only short paths will be allowed. The degree 
to which the length of a path corresponds to a human reader’s intuitive 
judgement of relevance can be argued, but at least there is an explicit defti- 
tion of easiness, which guarantees an upper bound on the amount of com- 
puting time required. 

The final criterion is plausibility. Every inference that has been suggested 
because of a marker collision will be accepted, unless there is a specific evi- 
dence contradicting it. Contradictions are checked by a unification-like 
matching routine and can involve things like mismatching types on con- 
straints or too many fillers for a relation. The matcher is discussed in the 
section on Step 4 below. 

Thus, the FAUSTUS inferencing algorithm guarantees that all inferences 
will be easy, relevant, and plausible, at least according to the definitions of 
these terms laid out above. To evaluate the algorithm more thoroughly, one 
needs to know more de&s, as the next section will provide. 

5. AN IN-DEPTH EXAMPLE 

Here another example is presented. This time the program’s trace level has 
been adjusted to print more verbose output, and to show the exact marker 
path shapes, collisions types, and inferences involved in processing text (6), 
a simple three-line text: 

(6a) Bill had a bicycle. 
(6b) John wanted it. 
(SC) He gave it to him. 

Understanding text (6) means making inferences like the following: 

(7a) The word it in (6)~) refers to the bicycle. 
(7b) The word he in (SC) refers to Bill. 
(7~) The word it in (6c) refers to the bicycle. 
(7d) The word him in (SC) refers to John. 
(7e) Bill having the bicycle is a precondition for giving it. 
(70 The giving results in John having the bicycle. 
(7g) This new having satisfies John’s goal of wanting the bicycle. 
(7h) John wanting the bicycle was the reason for Bill giving it. 

Different readers might have slightly different interpretations; the point 
of (7a-h) is that they give a likely interpretation and indicate the range and 
depth of the inferences that should be made. FAUSTUS’ construal of the 
text is as follows: 

Bill’s Bicycle 

(11 Bill had a bicycle. 
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Rep: (HAVING (EXPERIENCER = BILL) (PATIENT= A BICYCLE)) 

Inferring: the EXPERIENCER of the HAVING must be the HAVER 
This is a RELATION-CLASSIFICATION inference. 

Inferring: the PATIENT of the HAVING must be the HAD 
This is a RELATION-CLASSIFICATION inference. 

Int: (HAVING.1 (t HAVING) (haver = PERSON.l) (had = BICYCLE.l)) 

Above are seen two nomarker-passing inferences made during the process 
of turning the parser’s representation into a KODIAK network. The resulting 
internal KODIAK representation is labeled with “lnt:“. There is a straight- 
forward one-to-one correspondence between the “Rep:” and the “lnt:“- 
the difference is that the latter refers to individual concepts, and has been 
made more specific by relation classification and relation constraint infer- 
ences . 

At this point, markers are passed from the concepts in the internal repre- 
sentation to neighboring concepts. The blank space following the “Passing 
Markers and Suggesting Inferences:” below indicates that no inferences 
were suggested. When marker passing is complete, some summary statistics 
are printed. Then, since there are no suggestions to evaluate, the second 
input sentence is considered. 

Passing Markers and Suggesting Inferences: 

Concepts marked- 195 new, 195 total 
Collisions: 91 new, 91 total 
Suggested inferences: 0 new, 0 total 
Accepted inferences: 0 new, 0 total 

[2] John wanted it. 

Rep: (WANT-TO-HAVE (EXPERIENCER = JOHN) (PATIENT = IT)) 

Inferring: the EXPERIENCER of the WANT-TO-HAVE must be the 
WANTER 

This is a RELATION-CLASSIFICATION inference. 

Inferring: the PATIENT of the WANT-TO-HAVE must be the 
THING-WANTED 

This is a RELATION-CLA&IFlCATlON inference. 

Int: (WANT-TO-HAVE.2 (t WANT-TO-HAVE) 
(want-to-have = wanter = PERSON.2) 
(thing-wanted = INANIMATE.2)) 

Passing Markers and Suggesting Inferences: 1 2 

Each time there is a marker collision that leads to a suggested inference, 
FAUSTUS numbers the suggestion, prints the number, and places the sug- 
gestion on an agenda. We see above that inferences Number 1 and 2 have 
been suggested. The next step is to evaluate the suggestions: 
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Evaluating Suggestions: 

Rejecting: the HAVING is a OUTCOME of the WANT-TO-HAVE. 
because of a mismatch. 
This is a SINGLE-ELABORATION inference. 
it is #l, due to the collision: 
WANT-TO-HAVE.2-elaboration-STATIVE-ref-HAVING.1 

inferring: ‘IT’ refers to the BICYCLE. 
This is a REFERENCE inference. 
it is #2, due to the collision: 
BiCYCLE.l-ref-INANIMATE-ref-INANIMATE.2 

Wanting to have something can lead to having it, and the marker-passing 
mechanism found a connection which suggests that Bill’s having the bicycle 
is an outcome of John’s wanting it. When it comes time to evaluate this sug- 
gestion, however, FAUSTUS checks it more carefully and decides there is a 
mismatch: The outcome should be a having with John as the haver, not Bill. 
Therefore, the suggestion is rejected. 

The other suggestion was triggered by a collision at the concept INANI- 
MATE. A bicycle is a kind of inanimate object, and the representation for 
‘it’ is also an inanimate. Since ‘it’ needs a referent, this type of collision 
suggests that ‘it’ refers to the bicycle. When this suggestion is evaluated, 
there is no evidence to contradict it, and no competing referents for ‘it,’ so 
the suggestion is accepted. 

Now the program prints statistics for the second sentence and moves on 
to the third: 

Concepts marked: 25 new, 220 total 
Collisions: 108 new, 199 total 
Suggested inferences: 2 new, 2 total 
Accepted inferences: 1 new, 1 total 

[3] He gave it to him. 

Rep: (GIVING (ACTOR = HE) (PATIENT = IT) (RECIPIENT = HIM)) 

inferring: the ACTOR of the GIVING must be the GIVER 
This is a RELATION-CLASSIFICATION inference. 

inferring: ‘HE’ must be a SENTIENT-AGENT, because it is the GIVER 
This is a RELATION-CONSTRAINT inference. 

inferring: the PATIENT of the GIVING must be the GIVEN 
This is a RELATION-CiASSiFiCATiON inference. 

inferring: the RECIPIENT of the GIVING must be the GIVEE 
This is a RELATION-CLASSIFICATION inference. 

int: (GIVING.3 (f GIVING) (giver =MALE.3) (given = iNANiMATE.3) 
(givee = MALE.3B)) 
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In this sentence there are three relations: actor, patient, and recipient. Each 
becomes classified as a more specific relation, namely: giver, given, and 
givee. Again, these are called relation-classification inferences. Also here, is 
an instance of the other kind of nonmarker-passing inference: the relation- 
constraint inference. The idea is that anything that plays the role of a giver 
must be a sentient-agent: a person or some kind of agency or organization 
acting as a person. In the input, the giver is identified only as ‘he’-a male 
animal-but not necessarily a person. FAUSTUS makes the inference that 
‘he’ does in fact refer to a sentient-agent and therefore, a person. (Of course, 
there can be cases where the subject of a giving is a nonagent, such as Hze 
music gave him a headache, but such cases would be handled by a view inter- 
pretation that would map to a different lexical sense of “giving.“) 

Passing Markers and Suggesting Inferences: 3 4 5 6 7 6 9 10 11 

Evaluating Suggestions: 

Inferring: the ‘lT’ mentioned in [3] refers to the BICYCLE. 
This is a REFERENCE inference. 
It is a #5, due to the collision: 
BICYCLE.1 -ref-INANIMATE-ref-INANIMATE.3 

Inferring: there is a HAVING such that 
it is the RESULT of the GIVING and 
the WANT-TO-HAVE is the SATISFIES of it. 
This is a DOUBLE-ELABORATION inference. 
It is #6, due to the collision: 
GIVING.3-elaboration-HAVING-elaboration-WANT-TO-HAVE.l 

Suggestion 5 is straightforward; since only one inanimate object, the bicy- 
cle, has been mentioned, it is the only candidate for the referent of ‘it.’ 
FAUSTUS therefore accepts the suggestion that they are coreferential. Sug- 
gestion 8 is a double-elaboration collision with origins at the want-to-have 
in Sentence 2 and the giving in Sentence 3. The suggestion is that there is a 
new ‘having’ situation wherein Bill has the bicycle, and this is.the result of 
the giving and satisfies Bill’s goal of wanting-to-have it. 

Inferring: the WANT-TOHAVE is the REASON of the GIVING. 
This is a SINGLE-ELABORATION inference. 
It is #9, due to the collision: 
GIVING.3-elaboration-STATIVE-ref-WANT-TO-HAVE.2 

Inferring: the HAVING mentioned in [l] is a PRECONDITION 
of the GIVING. 

This is a SINGLE-ELABOWITION inference. 
It is #lo, due to the collision: 
GIVING.3-elaboration-STATIVE-ref-HAVING.1 

Rejecting: the HAVING mentioned in [l] is a RESULT of the GIVING. 
because of a mismatch. 
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This is a SINGLE-ELABORATION inference. 
It is #1 1, due to the collision: 
GIVING.3-elaboration-STATIVE-ref-HAVING.1 

Suggestions 9-l 1 are all single-elaboration inferences related to the giving 
action. These are because of marker collisions along the paths representing 
the following three facts: That somebody wanting something can be a reason 
for giving it to them; that having something is a necessary precondition of 
giving it; and that giving something results in someone else having it. The 
first two of these are accepted, thereby forming connections between the 
third sentence and the first two. 

Inferring: ‘HIM’ refers to John. 
This is a REFERENCE inference. 
It is #3, due to the collision: 
PERSON.2-ref-SENTIENT-AGENT-ref-MALE.3B 

Rejecting: ‘HIM’ refers to Bill. 
This is a REFERENCE inference. 
It is #4, due to the collision: 
PERSON.l-ref-SENTIENT-AGENT-ref-MALE.SB 

Rejecting: ‘HE’ refers to John. 
This is a REFERENCE inference. 
It is #6, due to the collision: 
PERSON.2-ref-SENTIENT-AGENT-ref-MALE.3 

Inferring: ‘HE’ refers to Bill. 
This is a REFERENCE inference. 
It is #7, due to the collision: 
PERSON.l-ref-SENTIENT-AGENT-ref-MALE.3 

There are two reasons why a suggestion can be rejected. The fast is a mis- 
match between two objects, as in Number 11 above. The other reason is that 
there are several mutually exclusive suggestions, of which only one can be 
accepted. It may be that none of the suggestions involves mismatches, but 
one stiIl wants to be able to choose the “best” alternative. As examples of 
this, both John and Bill have been suggested as possible referents of the 
pronoun ‘him’ in Sentence 3. They are also both possible referents of the 
pronoun ‘he.’ At the time these suggestions were made, there was no reason 
to prefer one over the other. FAUSTUS tries to delay making a decision 
until more information is available, so it makes two passes over the sugges- 
tions, taking care of these suggestions in the second pass. That is the reason 
why Number 3 comes after Number 11 above. In this particular case, the 
wait was worthwhile, because Inferences 8 and 11 have added the informa- 
tion necessary to choose between the referents in each case. Inference 11 
said that Bill having the bicycle was a precondition of the giving. But for 
this particular kind of precondition for giving, the knowledge base states 
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that the haver of the having must be the same as the giver of the giving. The 
haver is Bill, so when the suggestions are evaluated, the matcher quickly 
rules out John in Number 6 and accepts Bill in Number 7. Similarly, Infer- 
ence 8 says that the result of the giving is a state where John is the haver of 
the bicycle, and that the haver and the givee are the same. Therefore, the 
matcher accepts John in Number 3 and rejects Bill in Number 4. 

Note that it is a fact about English that the referents for ‘he’ and ‘him’ in 
Sentence 3 are necessarily distinct, and would necessarily be coreferential if 
‘himself’ were used instead of ‘him.’ The current parser does not produce 
this information, but if it did, FAUSTUS could then make use of the infor- 
mation to limit possible referents. 

After evaluating all the suggestions, the program prints the final statistics 
and stops. 

Concepts marked: 59 new, 279 total 
Collisions: 34 new, 233 total 
Suggested inferences: 9 new, 11 total 
Accepted inferences: 6 new, 7 total 

6. STEP 0: REPRESENTING THE KNOWLEDGE BASE 

To make these inferences requires some knowledge about bicycles, people, 
having, wanting, giving, and so forth. Representing this knowledge is Step 0 
in the algorithm. The representation of these concepts is in no way depen- 
dent on the text of story (1). In fact, when it came time to make FAUSTUS 
process this text, the only information that had to be added was the defini- 
tion of bicycle; all the other knowledge had already been defined for use in 
other texts. 

A pictorial representation of a section of the knowledge network is shown 
in Figures 4-6. The diagrams can be paraphrased in English as follows. 
First, for Figure 4: In the lower half wanting is a kind of stative situation, 
which has a wanter and a wanted-state. One kind of wanting is wanting-to- 
have, where the wanted-state is constrained to be a particular kind of 
having, namely wanter-has-thing, which requires that the haver of the 
having must be the same person as the wanter of the wanting and the thing 
had in the having must be the same as the wanted-thing of the wanting-to- 
have. In the upper left, Bill and John are names, and there is a mapping 
from names to the people they refer to. The upper right shows that a bicy- 
cle is a kind of vehicle, and a vehicle is an artifact and also a functional- 
object whose purpose is travelling. Every functional-object has a purpose, 
which must be an action of some kind. Finally, in the lower right a certain 
kind of event is seen that can have a result, which is a kind of stative. In 
addition, there is something called a cause, and one particular type of cause 
can hold between events and the results of those events. There is also a 
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Figure 4. Domain knowledge: Person, bicycle, result, and wanting 

particular before relation, called cause-before-effect which holds between 
the cause and the effect. Before has special semantics to the KODIAK 
interpreter in that it can only hold if the time of the before part is less than 
the time of the after part. The time of a state or event can be determined 
either by assertions that come explicitly in the input text, or by the default 
assumption that the order of presentation of the text is the same as the order 
of events in the world. In other words, when KODIAK is trying to deter- 
mine if A occurred before B, it checks first to see if they participate in any 
explicit before or after relation, and if they do not, it goes on to look at the 
input times associated with A and B. Shown in Figures 4-6 are the eight 
primitive links among concepts, summarized in Table 1. 

The relation between having and giving is shown in Figure 5. The concept 
having is defined to be a kind of strative situation, in particular it is a being, 
where the be-er is called the haver. The be-er is a participant in a situation, 
and thus must be a person. Besides having participants, situations can also 
have a patient, and the patient of a having is called the had, and must be a 



TABLE 1 
Prlmitive links Among Concepts 

link Name Description 

D Dominate X-D-Y 
I Instance X-I-Y 
V View X-V-Y 
s Slot X-S-R 

F Fill R-F-Y 
C Constraint R-C-Y 
= Equate x-=-y 

# Differ X-#-Y 

Meaning 

the class X is a subclass of Y 
X is an element of the class Y 
X’s can be considered as Y’s 
every X has at least 1 R relation 
the value of this R relation is Y 
every filler of a R relation Is a Y 

X and Y are coreferential 
X and Y are not coreferential 

I person I thing 

77 situation 533 1 

A2 ^ T 

r? 

givcr- 
&lS-giVC” 

ha& Y 
Figure 5. Domain knowledge: Having and giving 
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thing. The other kind of situation is an event, and one kind of event is an 
action. Actions have preconditions and a result. They also have an actor, 
which is a participant (although that link is not shown in the diagram). 
Giving is an action where the actor is called the giver, the patient is called 
the given, and there is another participant called the givee. (In the current 
world model, giving is also dominated by transferring, but that is not shown 
here.) Giving also has a precondition, namely giver-has-given and a result, 
givee-has-given, which are both kinds of having. However, the result of a 
particular instance of giving cannot be just any instance of a giver-has- 
given, it has to be one with the right object and the right recipient. We 
would not want the result of John giving a book to Mary to be that Bill has 
a pencil. Equate links are used to make the proper description. The equate 
links assert that the haver of the result of a giving must be the same as the 
givee of that giving, and the object given must be the same as the object 
had by the givee. Two similar equate links hold for the precondition. 

Figure 6 describes two complex events related to giving, namely gift- 
giving and lending-functional-object. Gift-giving is defined as having two 
steps; buying-gift and giving-gift. The two steps are defined in more detail 
in the FAUSTUS knowledge base, but the detail is not shown here. The 
other event is lending-functional-object, which has three steps. First the 
lender gives out the object; then the lendee uses it for its intended purpose; 
then he returns it. One fact about this situation is depicted: The patient of 
the lending is the same as the object given, the object lent, and the object 
returned. 

7. STEP 1: REPRESENTING THE INPUT TEXT 

Now that the representation of some of the background knowledege neces- 
sary to understand text (1) has been seen, Step 1 of the algorithm can be 
considered: the representation of input text. The three sentences are repre- 
sented in Figure 7. Not all of the instance links are shown; bicycle.1 should 
be an instance of bicycle, male.3b should be an instance of male, and so 
on. The notation having.1, for example, means that the event was men- 
tioned in Sentence 1; unless mentioned otherwise it will be assumed that this 
occurred before events in Sentence 2. 

7.1 NonMarker-Passing Inferences 
Two classes of inferences happen immediately when the input text is pro- 
cessed, rather than as a result of the marker-passing algorithm. These infer- 
ences are called relation-classification irzferences and relation-constraint 
inferences. Both are demonstrated in the following excerpt: 
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[2] A girl started talking to him. 

Rep: (TALKING (ACTOR=A GIRL) (PATIENT= HIM)) 

inferring: the ACTOR of the TALKING must be the TALKER 
This is a RELATION-CLASSIFICATION inference. 

inferring: the PATIENT of the TALKING must be the TALKEE 
This is a RELATION-CLASSIFICATION inference. 

inferring: ‘HIM’ must be a PERSON, because it is the TALKEE 
This is a RELATION-CONSTRAINT inference. 

int: (TALKING.2 (t TALKING) (talker = GIRL-P) (taikee = MALE.2)) 

Relation classification is the simpler of the two classes of nonmarker- 
passing inferences. The girl is specified as the actor of a talking. FAUSTUS 
reports that the actor of a talking is called a talker. This is important be- 
cause there are facts about talkers that are not true about actors in general. 
However, every actor of a talking is necessarily a talker as a matter of defini- 
tion. In a similar manner, the patient of the talking is classified as a talkee. 

The other class of nonmarker-passing inference is the relation-constraint 
inference. In the example above, him is specified as the patient of a talking 
event. Him maps to the concept male, which is defined as an animal whose 
gender is the male sex, while talking is defined as a kind of communication 
where the talker and talkee must be people. Therefore, if this male is to be 
a talkee, he must be a male person, not just a male animal of any kind. 
FAUSTUS makes the inference that this is the case. Note that these asser- 
tions are made during the process of constructing the internal KODIAK 
representation of the input, which is denoted with the Int: line. After that 
point markers are passed from each of the concepts in the internal represen- 
tation, and plausible inferences are suggested. 

8. STEP 2: PASSING MARKERS 

The next step is to pass markers from each of the new concepts in Figure 7 
to neighboring concepts in the network. Markers will end up being propa- 
gated to a large number of concepts (for the three-line text (6), markers 
were passed to 279 concepts in a knowledge base of roughly 1,000 concepts). 
Think of marker passing as spawning new markers which get spread around 
the network, and not as moving a single marker from node to node. 

In most implementations of marker passing, there is a notion of marker 
energy which decays as markers are passed, and prevents markers from 
spreading indefinitely. Marker energy is typically affected by the type or 
number of links traversed. Within the paradigm of marker energy, there are 
various subparadigms. Some researchers have used a system of energy con- 
servation where marker energy is divided evenly among the outgoing links 
(perhaps with some decay or “resistance” to cross the links), and marker 
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TABLE 2 
Path-Half Shapes Defined by Primitive Link Types 

Path Name Path-Half Shape 

Elaboration origin-I-D’-S-C-D*-collision 
Ref origin-I-D*-collision 
Filler origin-F-‘-S-‘-I-D’-collision 

View origin-I-D’-V-D’-C-‘-collision 
Constraint origin-I-D*-S-collision 

* Indefinite repetition. 
-I Traversal of on inverse link. 

passing terminates when the energy reaches zero. Others have used energy 
duplication, where marker energy is propagated across all outgoing links, 
and is stopped solely by decay, not by the cost of splitting. 

In FAUSTUS, the metaphor of marker energy has been abandoned com- 
pletely, and is replaced by marker state. The problem with marker energy 
approaches is that the criteria for cutting off marker passing is unrelated to 
the way markers are used. Markers are only useful when they collide, and 
then only certain collisions are useful; most collisions are spurious. Chamiak 
(personal communication, March, 1985) reports a figure of about 10% 
useful collisions. Experience with a marker-energy-based marker passer in 
FAUSTUS corroborates this rough figure, and suggests that the percentage 
of spurious collisions goes up as the number of concepts goes up. Proponents 
of marker passing claim that the time necessary to pass markers is irrelevant, 
because marker passing can be done in parallel on a parallel machine. This 
is true, but it has been shown here that the evaluation of inferences suggested 
by marker collisions cannot always be done in parallel. Thus, it is cost effec- 
tive to find ways to cut down on the number of spurious collisions. In at- 
tempting to do this, care should be taken to insure that marker passing can 
still be done in parallel. This means it must be a focalized operation; it cannot 
rely on any global information, or there may be memory contention for 
accessing and/or setting the global state. Before explaining the marker state 
propagation algorithm, the list of path shapes and inferences recognized by 
FAUSTUS will be presented. 

FAUSTUS has six marker-passing inference classes. Each inference class 
is characterized in terms of the shapes of the two path-halves which lead to 
the marker collision. There are give path-half shapes which are defined in 
terms of primitive link types. These path-half shapes can be described by 
regular expressions, where a Kleene star (*) marks indefinite repetition, and 
a(-‘) marks traversal of an inverse link. (See Table 2.) When certain path- 
halves combine, they form an interesting collision, one that suggests an 
inference. The six interesting collisions are listed in Table 3; all other colli- 
sions are ignored. 
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TABLE 3 
Path-Half Combinations Resulting in Interesting Collisions 

Inference Classes Path 1 Path 2 

Double Elaboration 
Elaboration 
Reference Resolution 
View Application 
Concretion 

Relation Concretion 

Elaboration 
Elaboration 
Ref 
Constraint 
Elaboration 

Elaboration 

Elaboration 
Ref 
Ref 
View 
Filler 

Filler 

8.1 Is the Marker-Passing Scheme Ad Hoc? 
This formulation, like many marker-passing schemes, is open to the criticism 
of being ad hoc. How are the paths chosen? How are the inference classes 
chosen? What would happen if one or the other were changed slightly? Such 
questions must be answered, lest the whole endeavor be considered only a 
clever programming trick. 

The first answer is that the choice of path-halves is solely an implementa- 
tion decision. Many other choices could be made to achieve the same results 
(hut with varying efficiency). The inference classes, on the other hand, are 
part of the theory. They could be altered slightly, but the claim here is that 
any powerful inferencing mechanism must be able to (1) infer relations 
between objects; (2) establish coreference relations; and (3) establish set 
membership relations. Here, elaboration and double elaboration for (l), 
reference for (2), and concretion and relation concretion for (3) are used. 
There is nothing unusual or ad hoc about these capabilities. 

There are minor points which could fruitfully be contested. View appli- 
cation is included as a separate class, while this could perhaps be subsumed 
under concretion. The two elaboration classes allow for the introduction of 
a new relation between two existing objects and for the introduction of a 
new object related (by two new relations) to existing objects, but there is no 
provision for, say, a new relation between an existing and a new object. So 
the choice of classes is reflecting a theory of how much evidence is required 
to make an assumption. This theory can be challenged or modified, but the 
path-halves are merely a means of implementing the theory, and should not 
be subject to criticism (unless they contain errors that lead to an incorrect 
implementation). 

8.2 The Marker State Propagation Algorithm 
In systems like FAUSTUS, which characterize useful collisions in terms of 
path shape, a marker state propagation algorithm is appropriate. The algo- 
rithm preprocesses the set of useful path-halves, building a finite state recog- 
nizer for the path halves. When a new marker is introduced, it has as its 
marker state the START node in the finite state recognizer. As markers are 
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Figure 8. Finite state recognizer for FAUSTUS 

passed along links from concept to concept they maintain their state. When 
marker m reaches an ACCEPT state (I at concept c, it does two things: (1) 
adds m to c’s property list under property a; (2) looks under c’s property list 
for other markers that have registered under properties that form a valid 
path with a. These and only these markers indicate useful collisions. Marker 
passing stops when there are no links to traverse that are in the recognizer. 
This is where the system derives its advantage: Marker passing can be stopped 
even when there are outgoing links, if it is known that none of the links are 
on useful paths. 

With a naive algorithm, one would have to inspect n’ collisions for a con- 
cept with n markers, but using the marker state algorithm, the number can 
be much smaller. The exact speedup depends on the number of different 
path-halves and collision types. The ftite state recognizer used by FAUSTUS 
is shown as Figure 8. It has nine states, so the state information could be 
represented in four bits. 

8.3 Antipromiscuity Cutoffs 
Without some restraints, the marker-passing mechanism as described would 
still end up checking an enormous number of potential inferences. For exam- 
ple, every situation can have a set of preconditions, which are constrained to 
be statives, which is dominated by situation. If the marker-passing mecha- 
nism is allowed to work unchecked, elaboration collisions would occur for 
every pair of instances of situation mentioned in the text, each collision 
suggesting that one is the precondition of the other. The problem is clear: 
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At a lower level, definitions state what types of dative can be a precondi- 
tion for what type of action, but these distinctions are lost when going up 
the hierarchy. They will be discovered again, and most of the potential in- 
ferences will be rejected when the matching routines are applied. Unfortu- 
nately, that requires a lot of wasted computation. Worse than that is the 
possibility of introducing improper inferences. This problem is important 
because one of the design decisions in FAUSTUS was to have a two-step 
filtering process where not too many unreasonable inferences would be 
suggested. 

This problem is addressed by Charniak (1985), who suggests the anti- 
promiscuity rule: Do not pass markers to concepts that have more than n 
links attached to them, for some reasonably large value of n. This will be 
referred to here as the static antipromiscuity solution. The problem with 
this approach is that adding new nodes to the middle of the hierarchy can 
disturb the link counts, and change the computation unpredictably. For 
example, suppose there is a high-level concept called thing, which dominates 
50 different concepts. This is just the type of concept one would like to iden- 
tify as a promiscuous one. However, now suppose two new concepts are 
added into the hierarchy just below thing, namely animate-thing and inani- 
mate-thing. Then thing will no longer be promiscuous under Charniak’s 
formulation. It may be that the effect of having thing be promiscuous is 
achieved if animate-thing and inanimate-thing still have enough links to be 
promiscuous, and if marker passing only proceeds up the hierarchy. But 
then the introduction of other intermediate nodes would just push the prob- 
lem down one level. 

Because of this difficulty, the dynamic antipromiscuity solution has been 
adopted here, which works as follows. First, run the algorithm on a repre- 
sentative sample of texts. Then count the markers that accumualate at each 
concept, and declare the m concepts with the most markers as promiscuous 
concepts. In this approach, the introduction of new concepts like animate- 
thing and inanimate-thing will not change the total number of markers that 
ultimately arrive at thing. Both solutions have an element of arbitrariness; 
Charniak must choose a value for n and a topology of the network, while 
here both a value for m and a representative sample of texts must be chosen. 

Another change in dynamic antipromiscuity is that passing markers to 
promiscuous concepts is not stopped, one just stops making certain classes 
of potential inferences at those concepts. This solution is appealing for 
several reasons. First, if one is assuming a parallel implementation of marker 
passing, then there is no cost in continuing to pass markers. Even in a se- 
quential simulation of parallelism, the promiscuous nodes are near the top 
of the hierarchy, and thus the cost of continuing to spread is not high. The 
sequential part of the algorithm-sifting through the collisions and evalu- 
ating inferences-would be slowed down by a proliferation of markers, so 
that is where the antipromiscuity rule comes in to play. Spurious elabora- 
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tion inferences can be ruled out, but other inference classes can still be con- 
sidered, like referential inferences, which seem to require marker collisions 
at very high levels in the hierarchy. To see that high-level collisions are 
sometimes important, consider the first two sentences of text (l), repeated 
here as (8). The word il involves the representation of something like physi- 
cal-object, or perhaps something even more abstract; it can sometimes refer 
to a situation or an idea. If physical-object were marked as a promiscuous 
concept, then under Charniak’s scheme there would be no way to get the 
collision that would generate the inference that it refers back to the bicycle. 
In the scheme here, a collision would be detected at a promiscuous concept, 
but this would be a referential collision, a type that allows collisions at pro- 
miscuous concepts, if exactly one of the marker origins is explicitly marked 
as a reference. Reference collisions like the one at person from Bill and 
John are thrown out because person is a promiscuous concept. Other colli- 
sion types will be seen that also refuse to suggest an inference if they occur 
at a promiscuous concept. 

(8) Bill had a bicycle. John wanted it. 

9. STEP 3: SUGGESTING INFERENCES 

Associated with each inference class is a suggested inference. The suggestions 
can add a new concept to the construal of the text, adding a new relation 
between concepts, construing one object to be coreferential with another, or 
classifying some concept or relation to be a member of some class. The claim 
is that these are the only kind of inferences that need be made (for a certain 
level of understanding of the text), and that the six inference classes are 
sufficient to generate the appropriate construals. 

In story-understanding systems such as Dyer’s (1982) BORIS and in most 
expert system programs, there can be hundreds of inference rules, and add- 
ing new knowledge means adding new rules. In FAUSTUS, adding new 
knowledge is done declaratively, without modifying the basic inference 
classes. Thus, FAUSTUS’ inference classes are very different from the in- 
ference rules in traditional expert systems. 

Suggestions take the form of entries on an agenda, or queue. Each entry 
has an inference class and some specific information that depends on the 
type. For example, the suggestion of finding a referent for a pronoun would 
have information giving a list of possible referents. When a suggested infer- 
ence is run, it does one of three things: succeeds and builds new representa- 
tions into the world model, fails and removes itself from the agenda without 
building any representations, or defers and puts itself back into the agenda. 

The most important part of the algorithm is the set of inference classes, 
as listed below. 
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Figure 9. Elaboration/referent path collision 

9.1 Elaboration Inferences 
Elaboration inferences are those that build a new relation between two con- 
cepts, filling in a slot of some concept with another concept. There are two 
varieties of elaboration inferences: A collision between two elaboration 
paths creates a new instance as one of the concepts, while a collision between 
an elaboration path and a referent path uses existing instances. 

When an elaboration path and a referent path collide, the suggested 
inference is that the concept at the origin of the referent path might be the 
filler of the slot in the elaboration path. For example, Figure 9 shows a 
referent path from having.1 colliding at having with an elaboration path 
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Flgure 10. Elaboration inference made 

from giving.3. The suggested inference is that having.1 might be a precon- 
dition of giving.3. In this particular case, the suggestion will be accepted, 
because there is no evidence to contradict it, and no better alternative filler 
for that slot. Figure 10 shows the result of an elaboration inference: a new 
relation, giving-preconditionl.3, is built (at the bottom middle of the dia- 
gram) indicating that having.1 is in fact a precondition of giving.3. 

Not all suggestions are accepted. There is another collision at having 
suggesting that having.1 is the result of giving.3. This elaboration inference 
will be rejected when it comes time to evaluate it because the match is not 
satisfied. There is an after relation that must hold between a situation and 
its result, but having.1 occurs before, not after giving.3. 
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The other type of inference involving an elaboration path is the double- 
elaboration inference, when two elaboration paths collide. Although there 
are no good examples of this in the sample text, it does show up in the fisher- 
boy story, text (1) above, in the phrase hoping to catch a few fish from the 
sea, which they could sell. The connection between catching the fish and 
selling the fish is an instance of having the fish. Unlike the previous exam- 
ples, there is no direct link between the two, and there are no instances of 
having mentioned in the text. Instead, there is a two-step connection: the 
having is a result of the catching and a precondition of the selling. One 
might guess that this difference would require completely different marker 
paths and inference classes than the case of simple elaborations, but it turns 
out that the same shape marker paths are involved. Markers pass from catch- 
ing via result to having-quarry to having, and from selling via precondi- 
tion to having-merchandise to having. Both of these paths have the shape 
I-S-C-D, which matches the specification of an elaboration path. 

Double elaboration inferences always wait in the suggestion queue before 
they are evaluated. The reason for this is that the next sentence might pro- 
vide an explicit filler for the slots, in which case it would be incorrect to 
make up a new instance for that purpose. The purpose of the agenda is to 
delay making any decisions until pairs of inferences like these have time to 
hook up with each other. 

Double elaboration inferences solve a problem that Charniak (1972) ad- 
dressed with a much more complicated approach. Charniak was concerned 
with texts like the following: 

(9) Janet was going to get a present for Jack. 
She needed some money. 

(10) Janet needed some money. 
She was going to get a present for Jack. 

In both cases, the reader should infer that Janet needed the money because 
of getting the present. Charniak’s solution was to attach to the concept get- 
present a procedure, or demon, which would look for an instance of need- 
ing-money, and if found, assert that the needing and getting are causally 
related. As (9) and (10) show, the demon must be able to look both forwards 
and backwards. The problem with this shows up in cases like (11): 

(11) Janet was going to get a present for Jack. 
She went to get her piggy bank. 

Here, the demon on get-present will not find the need-money it is looking 
for, and thus can make no inference. But this is not the only demon around. 
In Chamiak’s formulation there is also a demon on get-piggy-bank which 
is also looking for an instance of need-money, and, once found, will assert 
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that needing money is the reason for getting the piggy bank. To make the 
right inferences in the case of (1 I), Charniak must introduce a complicated 
mechanism called demon-demon interaction. 

In FAUSTUS, there is no need for demons, and thus there is no need to 
instruct demons which direction to look, or how they should interact with 
one another. Instead, one needs only to add to the knowledge base an en- 
ables relation between have-money and get-present, and a reason relation 
between get-piggy-bank and have-money. Once that is done, the double- 
elaboration inference class will find the right connection in (1 l), and instan- 
tiate the right inferences. 

9.2 Referential Inferences 
Referential inferences allow, among other things, a pronoun or definite 
noun phrase to refer to a previously represented concept. There are actually 
three distinct classes of referential paths, depending on the concept at the 
origin of the path. If the concept is marked indefinite, the path is classified 
as a referent path; if it is marked definite, the path is a reference path, and if 
it is unmarked, it is simply a ref path. Noun phrases in English are often 
marked: “a friend” is indefinite and thus a referent; “the friend” is definite 
and thus a reference. Pronouns are also considered references. Some noun 
phrases and most verb phrases are unmarked. 

Whenever a reference path collides with a referent path the suggestion is 
that the reference refers to the referent. (For a ref-ref collision, the sugges- 
tion is made both ways.) Suggestions are collected, and stored under each 
reference. For a given reference, if there is exactly one referent it is accepted, 
and an equate link is added to show this. If there are several referents, the 
subset of the referents that match the reference in the highest number of 
features or relations is found. For example, a boy is defined as a child, a 
male, and a person, whereas a friend is defined as a person who participates 
in a friendship relation. Therefore, in ‘A boy was talking to a friend. The 
girl saw him.” the reference “him” would match the referent “a boy” on 
two counts, male and person, while it would match “a friend” on only one. 
Thus, “the boy” would be the chosen referent. 

Ties in this counting process are resolved using recency and focus. Re- 
cency is the number of sentences that have passed since a possible referent 
was last mentioned, and focus is the idea that concepts that have served as 
slot fillers for salient case slots like actor are more likely to be referents than 
concepts that were fillers of peripheral case slots, or no slots at all. For ex- 
ample, in “A boy was talking to his father. The girl saw him.” the referent 
for “him” would be the boy, because the boy appears in a focused (actor) 
slot, while the father does not. Work like that of Grosz (1977) develops the 
notion of focus much further than this. 
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There are well-known syntactic contraints on reference. Reflexive pro- 
nouns are one source of these constraints, and the notion of C-command 
(and its variants) is another source. The parser that is currently used does 
not compute these constraints, but if one were to switch to a parser that did, 
the algorithm could accommodate this information to rule out certain co- 
reference interpretations. The point is that any reference resolution mecha- 
nism should use all the syntactic information available to it, should use 
semantic and pragmatic constraints, and should fit in with other inferencing 
mechanisms. The current scheme satisfies those criteria. 

How to combine evidence from various sources is an open research ques- 
tion; FAUSTUS uses a fairly primitive counting procedure that does not try 
to give a good answer to questions like how much focus is necessary to offset 
one time unit of recency. This mechanism fails to make a reference deter- 
mination in some cases, and makes intuitively incorrect determinations in 
other cases. However, it is satisfactory for the vast majority of cases. 

One complication is that the surface article in English is not as reliable as 
one might hope it would be. For example, the article fhe can be used to refer 
to a specific entity that had not previously been mentioned in the text, as 
long as it is a well-known entity, such as the sun or the president. It can also 
refer to some role in a known script or other type of knowledge structure, as 
when one refers to rhe waiter in a restaurant. FAUSTUS handles this by 
finding no referent for waiter and then using an elaboration inference to 
relate the waiter to his role. 

Another complication is that some phrases are not marked with any arti- 
cle at all in English. This is particularly true for verb phrases. In passages 
like (12), the talked in the second sentence refers to the same event as the 
discussed in the first sentence, but neither event is explicitly marked as defi- 
nite or indefinite. FAUSTUS is able to make the inference that the two ac- 
tions are coreferential, using the same mechanism that works for pronouns. 
The idea of treating actions under a theory of reference is covered in Lock- 
man and Klappholz (1980). A trace of FAUSTUS processing (12) follows: 

(12) The president discussed Nicaragua. He talked for an hour. 

The President 

[l] The president discussed Nicaragua. 

Rep: (DISCUSSING (ACTOR=THE PRESIDENT) 
(CONTENT = NICARAGUA)) 

[2] He spoke for an hour. 

Rep: (TALKING (ACTOR= HE) (DURATION =AN HOUR)) 

Inferring: ‘HE’ refers to the PRESIDENT. 
This is a REFERENCE inference. 
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Inferring: the NICARAGUA is a COUNTRY such that 
it Is the HABITAT OF ‘HE’ and 
it Is the COUNTRY of the PRESIDENT. 
Thls Is a DOUBLE-ELABORATION Inference. 

Inferring: the TALKING refers to the DISCUSSING. 
This Is a REFERENCE Inference. 

Although this example was meant only to illustrate action/action corefer- 
ence, there is another inference, where Nicaragua is taken to be both the 
residency of the president, and the country which he presides over. I did not 
expect this inference to occur; like most readers, I interpreted the text as 
referring to the president of the United States. However, this is because 
I am living in the U.S., and the current U.S. president is a salient figure. 
FAUSTUS does not have this context available to it. Nowhere was it speci- 
fied to FAUSTUS that the texts are being read in the U.S., so given that 
(lack of) context, Inference 3 is quite reasonable. 

9.3 View-Application Inferences 
Sometimes it is necessary to view one concept as another in order to make 
the right interpretation. An example of this shows up in the sentence The 
Red Sax killed the Yankees. There is a constraint violation in that the Killed- 
Of-Killing relation should hold between an instance of killing and an animal, 
but the Yankees are defined as a baseball team, which is an organization, 
and not an animal. To resolve this constraint violation, we need to interpret 
either the Yankees as a kind of animal, or the killing as a kind that holds 
between organizations. Views are applied to make interpretations like this, 
but they are only applied as needed. Ordinarily, markers are not passed 
along view links. However, if an input representation contains a constraint 
violation, then the markers originating at each of the concepts involved in 
the violation are free to traverse view links. 

This view and constraint paths work in tandem much as the referent and 
reference paths do; there is an inference associated with the intersection of a 
constraint path and a view path, but neither of them interact with any of the 
other types of paths. The inference routine associated with their intersection 
checks to see if viewing the concept at the origin of (17) as an instance of the 
concept at the collision could rectify the restraint violation that started this 
passing along view links. If so, the suggested inference is to apply the view. 
A trace of FAUSTUS processing the kill example follows: 

Baseball 

[l] The Red Sox killed the Yankees. 

Rep: (KILLING (ACTOR=THE REDSOX) (PATIENT=THE YANKEES)) 
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Inferring: the KILLING Is viewed as a DEFEAT-CONVINCINGLY, 
where the YANKEES Is the DEFEATED of it. 
This is a VIEW-APPLICATION inference. 

Inferring: the KILLING is viewed as a DEFEAT-CONVINCINGLY, 
where the RED-SOX is the DEFEATER of it. 
This Is a VIEW-APPLICATION Inference. 

It should be emphasized that the knowledge base already included a mapping 
between kill and defeat-convincingly; the problem here was to find the 
proper mapping and apply it to this particular case. 

When more than one view is applicable, one has to choose between them. 
The first step is to see if one of the applicable views is dominated by another. 
If so, consider only the most specific, and eliminate the more general view 
from consideration. If this fails, the next step is to defer making a decision 
for one time unit. On the next time around, it may be that newly inferred 
links to the concepts involved will enable a choice to be made. 

As an example of multiple applicable views, consider the sentence The 
chairman moved the meeting up a week. Moving something up should take 
as object a direction or distance, not a time duration. To understand this 
sentence, we need a view that maps time onto a physical direction or dis- 
tance scale. There are two such views, one that measures distance from the 
current time into the future, and one that measures time from some land- 
mark in the future back to the current time. Applying the first view would 
mean interpreting the sentence as meaning the meeting was postponed, while 
the second view would have the meeting occurring earlier than originally 
planned. Given both views, FAUSTUS finds both interpretations, but does 
not choose between them. 

There are cases where a view should be applied even when there is no 
constraint violation. For example, in Lend1 killed Becker at Wimbledon, 
there is a valid literal interpretation, but the preferred interpretation still 
views killed as defeat convincingly. Similarly, it is literally true that no man 
is an island, entire of itself; but in processing the Donne quote it would be 
best to interpret island as an isolated-entity, rather than a land-mass. 
FAUSTUS does not handle such cases. 

Jacobs and Rau (1985) used views to handle certain very general rela- 
tionships in language. The problem he addressed was generating English 
sentences. Views can be used to handle metonymic relations as well as meta- 
phoric ones, in a manner similar to that described by Hobbs et al. (1988), 
and adopted by Charniak and Goldman (1988). 

Martin (1987, 1988) presents a system called MIDAS (Metaphor Inter- 
pretation, Denotation and Acquisition System) which can learn a new meta- 
phorical mapping from input that uses a known, related metaphor. This 
system can also choose between multiple applicable metaphors, and can 
find a metaphorical interpretation even when the literal reading is valid. 
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9.4 Concretion Inferences 
In the KL-ONE language, much attention is paid to the process of classify- 
cation’ (see Schmolze & Lipkis, 1983). For example, when given an instance 
of traveling with an automobile as vehicle, the KL-ONE classifier could 
conclude the traveling must also be an instance of driving. When given a 
description of an animal with four legs, a trunk, large ears, tusks, and grey 
skin, the classification algorithm could conclude that the animal must be a 
quadruped, but no more. One would like to be able to do more than that, 
and infer that the animal is probably an elephant. This is a plausible, de- 
feasible inference, not a logical consequence of the taxonomy, and thus is 
beyond the scope of KL-ONE classification. Such an inference is called a 
concretion inference in FAUSTUS. It refers to the procss of interpreting a 
concept as something more concrete-less abstract-than is strictly war- 
ranted by the representation. Making a concretion inference means adding a 
dominate or instance link from the concept to a category. Concretion was 
first discussed in Wilensky (1983) and Norvig (1983b). 

To demonstrate how concretion works in FAUSTUS, use the example 
John cut the grass. FAUSTUS infers an instance of lawn-cutting, not just 
any kind of cutting. This is important, because there are several specific 
facts associated with lawn-cutting. For example, it is likely that John used a 
lawnmower as an instrument, and that he cut the blades of grass horizon- 
tally, to a roughly uniform height. If we stopped at cutting, and did not 
make the concretion inference, we could not make the lawnmower interpre- 
tation. It would be just as likely that the instrument was a chainsaw, and 
that he hacked the turf into two large pieces. 

Examples of relation concretion are shown in texts (13a-d). The problem 
is that the preposition with is ambiguous. It can mark an accompanier, in- 
strument, manner or just a default “along with/in proximity to” modifier. 

(13a) John ate spaghetti with Frank. 
(13b) John ate spaghetti with a fork. 
(13~) John ate spaghetti with gusto. 
(13d) John ate spaghetti with pesto. 

For each of these, the parser produces a representation where the relation 
denoted by “with” is vague. FAUSTUS’s job is to concrete the vague rela- 
tion to one of the known cases. In (13a), the relation-concretion collision at 
person suggests that the with relation should be concreted to an accom- 
panier. Another collision, at phys-obj, suggests that the with be interpreted 
as an instrument. In cases where there are multiple possibilities, the evalua- 
tion rules favor the more specific interpretation, in this case accompanier. 
In (13b), only the instrument interpretation is suggested, so it is accepted. 

’ Actually, the term “realizer” was used for this, but I will stick to “classification.” 
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In (13c), neither of these are suggested, since “gusto” is not a physical 
object. Instead, the manner relation is suggested and accepted. 

For (13d) the parser’s representation is incorrect; it attaches the preposi- 
tional phrase to the verb rather than the direct object. Charniak and Gold- 
man (1988) has shown that marker-passing techniques can be used to decide 
the proper attachment for prepositional phrases, but FAUSTUS does not 
address this problem since it is not integrated with the parser, and there is no 
way to get the parser to produce a representation that is neutral as to attach- 
ment. However, when presented with the representation: 

Rep: (EATING (ACTOR = JOHN) (PATIENT= SPAGHETTI 
(WITH = PESTO))) 

FAUSTUS is able to make the right inference. The accompanier, instru- 
ment, and manner interpretations are not open, since they only hold for 
actions, and spaghetti is not an action. The only possibility remaining is the 
default “along with” interpretation. In fact, a more specific version of this 
relation represents the fact that sauces go with other foods, and given the 
knowledge that pesto is a sauce, FAUSTUS is able to concrete to the sauce 
relation. 

10. Sjep 4: EVALUATING SUGGESTIONS 

As stated earlier, suggestions are placed on a queue called the agenda, and 
then evaluated after marker passing has been completed for an input. The 
reason for maintaining an agenda rather than just evaluating each sugges- 
tion as soon as it is detected is that some suggestions cannot be evaluated in 
their own right, but must be compared to other, competing suggestions. For 
example, in text (l), the bicycle story, there were two competing sugges- 
tions: one that ‘he’ referred to John, and the other that ‘he’ referred to Bill. 
Both suggestions are plausible, and either one would be accepted if evalu- 
ated separately. Therefore, they must be evaluated together, and the best 
possibility selected. Evaluation becomes a question of relative plausibility, 
rather than absolute yes/no acceptance. 

All the inference classes offer the possibility of competing inferences. 
Referents can compete for the same reference, fillers can compete to elabo- 
rate the same relation, and multiple possible views or concretions of a con- 
cept are possible. The agenda evaluation procedure evaluates competing 
suggestions together as a group. The procedure also arranges to evaluate all 
single suggestions before those with competing alternatives. This way all 
possible information is available when forced to make a choice. An alterna- 
tive would be to try all possible combinations of suggested inferences, and 
pick the best resulting state. Unfortunately, the complexity of this approach 
is exponential. 
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It is useful to think of the suggestion mechanism as a three-part filter. 
Out of the infinite number of possible inferences that could be made, com- 
pletely irrelevant ones are filtered out by only considering inferences due to 
particular types of marker collisions. Then, out of all the possible inferences 
due to collisions, impossible ones are filtered out. For example, if ‘John,’ 
‘Mary,’ and ‘he’ have been mentioned in the text, then there will be a refer- 
ential collision with markers originating at ‘Mary’ and ‘he’ and colliding at 
the concept animal. But this will not suggest an inference because ‘Mary’ 
and male are in mutually disjoint portions of the hierarchy. Finally, the 
third filter is a more stringent check of suggestions at evaluation time. A 
suggestion is made unless there is an explicit contradiction-such as two 
concepts being in mutually disjoint categories-but the suggestion is only 
accepted after a full check for contradictions involving all known relations. 

11. EARLY hfARKER PASSING BASED INFERENCES 

Now that the FAUSTUS system has been described, it can be compared to 
previous systems. One of the first inferencing programs was Quillian’s (1%9) 
Teachable Language Comprehender, or TLC, which took as input single 
noun phrases or simple sentences, and related them to what was already 
stored in semantic memory. For example, given the input “lawyer for the 
client,” the program could output “at this point we are discussing a lawyer 
who is employed by a client who is represented or advised by this lawyer in a 
legal matter.” The examples given in Quillian (1969) show an ability to find 
the main relation between two concepts, but do not go beyond that. One 
problem with TLC was that it ignored the grammatical relations between 
concepts until the last moment, when it applied “form tests” to rule out cer- 
tain inferences. For the purposes of generating inferences, TLC treats the 
input as if it had been just “Lawyer. Client.” Quillian suggests this could 
lead to a potential problem, and presents the following examples: 

lawyer for the enemy enemy of the lawyer 
lawyer for the wife wife of the lawyer 
lawyer for the client client of the lawyer 

In all the examples on the left hand side, the lawyer is employed by some- 
one. However, among the examples on the right hand side, only the last 
should include the employment relation as part of the interpretation. While 
a solution in general terms is suggested, Quillian admits that TLC as it stood 
could not handle these examples. 

FAUSTUS has a better way of combining information from syntax and 
semantics. Both TLC and FAUSTUS suggest inferences by spreading markers 
from components of the input, and looking for collisions. The difference is 
that TLC used syntactic relations only as a filter to eliminate certain sugges- 
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tions, while FAUSTUS incorporates the meaning of these relations into the 
representation before spreading markers. Even vague relations denoted by 
for and of are represented as full-fledged concepts, and are the source of 
marker-passing. Often a concretion inference will find a more specific inter- 
pretation for these vague relations, but if none is found, FAUSTUS will 
leave the interpretation vague. 

Given the input “Lawyer. Client.” FAUSTUS can find a connection 
between lawyer and client without the for relation, just like TLC. Markers 
originating at the representations of “lawyer” and “client” collide at the 
concept employing-event. This double elaboration path suggests that the 
lawyer employs the client. 

Given the “lawyer for the enemy” a nonmarker passing inference first 
classifies the for as an employed-by relation, because a lawyer is defined as 
a professional-service-provider, which includes an employed-by slot as a 
specialization of the for slot. This classification means the enemy must be 
classified as an employer. Once this is done, FAUSTUS can suggest the 
employing-event that mediates between an employee and an employer, just 
as it did above. Finally, given “enemy of the lawyer” the of is left with the 
vague interpretation related-to, so the enemy does not get classified as an 
employer, and no employment event is suggested. 

11.1 Script-Based Inferences 
The SAM (Script Applier Mechanism) program Cullingford (1978) was 
built to account for stories that refer to stereotypical situations, such as 
eating at a restaurant. A new algorithm was needed because conceptual 
dependency couldn’t represent scripts directly. In KODIAK, there are no 
arbitrary distinctions between “primitive acts” and complex events, so 
eating-at-a-restaurant is just another event, much like eating or walking, 
except that it involves multiple agents and multiple substeps, with relations 
between the steps. Consider the following example: 

The Walter 

[l] John was eating at a restaurant with Mary. 

Rep: (EATING (ACTOR = JOHN) (SETTING = A RESTAURANT) 
(WITH = MARY)) 

Inferring: a WITH of the EATING Is probably 
the ACCOMPANIER 
because Mary fits It best. 
Thls Is a RELATION-CONCRETION Inference. 

Inferring: the EATING Is a EAT-AT-RESTAURANT. 
This Is a CONCRETION Inference. 

[2] The waiter spilled soup all over her. 
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Rep: (SPILLING (ACTOR = THE WAITER) (PATIENT= SOUP) 
(RECIPIENT= HER)) 

Inferring: there Is a EAT-AT-RESTAURANT such that 
the SOUP is the FOOD-ROLE of it and 
the RESTAURANT is the SETTING of it. 
This Is a DOUBLE-ELABORATION inference. 

Inferring: there Is a EATING such that 
the SOUP is the EATEN of It and 
It Is the PURPOSE of the RESTAURANT. 
This is a DOUBLE-ELABORATION Inference. 

Inferrlng: there is a EAT-AT-RESTAURANT such that 
the WAITER is the WAITER-ROLE of it and 
the SOUP is the FOOD-ROLE of it. 
This is a DOUBLE-ELABORATION inference. 

The set of inferences seems reasonable, but it is instructive to contrast 
them with the inferences SAM would have made. SAM would first notice 
the word restaurant and fetch the restaurant script. From there it would 
match the script against the input, filling in all possible information about 
restaurants with either an input or a default value, and ignoring input that 
didn’t match the script. FAUSTUS does not mark words like restaurant or 
waiter as keywords. Instead it is able to use information associated with 
these words only when appropriate, to find connections to events in the 
text. Thus, FAUSTUS can handle the fleeting script problem: Given John 
wafkedpast a restaurant, it would not infer that he ordered, ate, and paid 
for a meal. 

11.2 Plan-Based Inferences 
In the previous section it was shown that FAUSTUS was able to make what 
have been called “script-based inferences” without any explicit script- 
processing control structure. This was enabled partially by adding causal 
information to the representation of script-like events. The theory of plans 
and goals as they relate to story understanding, specifically the work of 
Wilensky (1978), was also an attempt to use causal information to under- 
stand stories that could not be comprehended using scripts alone. Consider 
story (14): 

(Ma) John was lost. 
(14b) He pulled over to a farmer by the side of the road. 
(14c) He asked him where he was. 

Wilensky’s PAM program processed this story as follows: From (Ma) it infers 
that John will have the goal of knowing where he is. From that it infers he is 
trying to go somewhere, and that going somewhere is often instrumental to 
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doing something there. From (14b) PAM infers that John wanted to be near 
the farmer, because he wanted to use the farmer for some purpose. Finally 
(14c) is processed. It is recognized that asking is a plan for knowing, and 
since it is known that John has the goal of knowing where he is, there is a 
match, and (14~~) is explained. As a side effect of matching, the three pro- 
nouns in (14c) are disambiguated. Besides resolving the pronouns, the two 
key inferences are that John has the goal of finding out where he is, and that 
asking the farmer is a plan to achieve that goal. 

In FAUSTUS, the same interpretation of the story is arrived at by a very 
different method; (14a) does not generate any expectations, as it would in 
PAM, and FAUSTUS cannot find a connection between (14a) and (14b), 
although it does resolve the pronominal reference, because John is the only 
possible candidate. Finally, in (14c), FAUSTUS makes the two main infer- 
ences. The program recognizes that being near the farmer is related to ask- 
ing him a question by a precondition relation (and resolves the pronominal 
references while making this connection). FAUSTUS could find this con- 
nection because both the asking and the being-near are explicit inputs. The 
other connection is a little trickier. The goal of knowing where one is was 
not an explicit input, but “where he was” is part of (14c), and there is a col- 
lision between paths starting from the representation of that phrase and 
another path starting from the asking that lead to the creation of the plan-for 
between John’s asking where he is and his hypothetical knowing where he is. 

The important conclusion, as far as FAUSTUS is concerned, is that both 
script- and goal-based processing can be reproduced by a system that has no 
explicit processing mechanism aimed at one type of story or another, but 
just looks for connections in the input as they relate to what is known in 
memory. For both scripts and goals, this involves defining situations largely 
in terms of their causal structure. 

11.3 Coherence Relation Based Inferences 
In this section inferences based on coherence relations are considered, as 
exemplified by this example proposed by Kay (1981): 

(1% A hiker bought a pair of boots from a cobbler. 

From the definition of buying one could infer that the hiker now owns 
the boots that previously belonged to the cobbler and the cobbler now has 
some money that previously belonged to the hiker. However, a more com- 
plete understanding of (15) should include the inference that the transaction 
probably took place in the cobbler’s store, and that the hiker will probably 
use the boots in his avocation, rather than, say, give them as a gift to his 
sister. The first of these can be derived from concretion inferences once we 
have described what goes on at a shoe store. The problem is that we want to 
describe this in a neutral mermer-to describe not “buying at a shoe store” 
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which would be useless for “selling at a shoe store” or “paying for goods at 
a shoe store” but rather the general “shoe store transaction.” This is-done 
by using the commercial-event concept, which dominates store-transaction 
on the one hand, and buying, selling and paying on the other. Each of 
these last three is also dominated by action. Assertions are made to indicate 
that the buyer of buying is both the actor of the action and the merchant 
of the commercial-event. The next step is to define shoe-store-transaction 
as a kind of store-transaction where the merchandise is constrained to be 
shoes. With that done, the program concludes that a selling involving shoes 
is a shoe store transaction, that the selling takes place in a shoe store, and 
the seller is an employee of the store. Another inference is based on a colli- 
sion at the concept walking. The purpose of boots is walking, and the walk- 
ing is to be done by the hiker. 

12. CONCLUSION 

The history of text-understanding systems begins with a series of strong- 
method programs each with algorithms aimed at processing a particular 
knowledge structure: scripts, plans and goals, thematic abstraction units, 
and so on. FAUSTUS was built to test two assertions: first, that these knowl- 
edge structures are now well enough understood to be put in a common 
representation formalism, and second, that the resulting knowledge can be 
processed with a common algorithm that looks for connections between 
knowledge structures, rather than an algorithm geared towards processing 
one particular structure. 

In a sense, FAUSTUS was an experiment in self-deprivation. The repre- 
sentation language and the basic inference classes were defined early on in 
the project. Thus, there was never the possibility of throwing in “one more 
production rule” to add a special case to account for some annoying bug. 
Instead, the bulk of the work was in designing good representations of the 
domain concepts. Because most concepts are used in several texts, and the 
same knowledge base had to work for all texts, the author was forced to 
confront representational problems rather than add special cases. The result 
was a better understanding of the knowledge structures, and a proof-by- 
example of the two assertions. Thus, FAUSTUS can be seen as a synthesis 
of much work in the 70s and early 80s. It is unified in that it handles many 
knowledge structures with one algorithm, and it is extensible in that new 
types of structures can be added. 

Marker passing proved to be a valid implementation technique, and fit 
well with the metaphor of finding co~ections between pieces of knowledge. 
The marker state propagation algorithm is an important addition to the set 
of marker-passing techniques. However, marker passing was not crucial to 
the project. Aherman’s (1985) NEXUS, for example, used breadth-first 
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search to find similar connections. Any search method could have been sub- 
stituted for marker passing as long as it was capable of finding elaboration, 
concretion, reference, and view inferences (or their equivalent in some other 
formalism). 

FAUSTUS is quite strong at suggesting plausible, relevant, and easy 
inferences, and at deciding among competing suggestions. It also begins to 
address a much harder problem: combining evidence from several sugges- 
tions, and choosing the best subset of suggestions. This is the primary prob- 
lem addressed by modern weak-method approaches like those of Charniak 
and Goldman (1988), Hobbs et al. (1988), Pollack and Pereira (1988) and 
Stallard (1987). In each of these systems, the idea is to use abduction to pick 
the most likely or most coherent interpretation. Each system uses some kind 
of global metric that allows different sources of evidence to be combined 
in comparing one interpretation with another. The difficulty is twofold: 
defining the necessary knowledge, with the right metrics, and limiting the 
search in some way, since an unconstrained search would be exponential. 

FAUSTUS constrains search in a very severe fashion: It is deterministic. 
Like Marcus’ (1980) parser, it never backs up once it has accepted an infer- 
ence. It is able to do this because it keeps a list of possible inferences (the 
agenda), and carefully selects inferences without competition first. The order 
of evaluation attempts to account for useful interactions of constraints, 
without having to consider all possible combinations of inferences exhaus- 
tively. Of course, there may be situations where the possible inferences are 
so deeply intertwined that it is impossible to pick one without considering 
all others. Also, many texts are interesting precisely because they induce the 
reader to infer one thing, and then reveal that in fact the opposite is true. 
FAUSTUS is unable to handle these texts. Thus, it is a tribute to the coher- 
ence of texts, and not to FAUSTUS’ combinatorial powers, that FAUSTUS 
is able to handle as many texts as it does. 

FAUSTUS also suffers from being an isolated module. It is not integrated 
with the parser; problems stemming from this are well known. Another 
problem is that the suggestion-finding mechanism is not really integrated 
with the suggestion-evaluation mechanism. FAUSTUS has no notion of a 
coherent or noncoherent text: It gathers suggestions and accepts as many of 
them as possible. It does not notice if there are “too few” inferences to 
make the text coherent. 

The future of text-processing systems seems to lie with the abduction 
paradigm. More powerful systems will need better and more complete rep- 
resentations of knowledge, better integration with neighboring modules, 
and a way of constraining search so that probable interpretations can be 
abduced in tractable time. 

n Original Submission Date: August 9, 1988 
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