
ARTICLES

Playing M a s t e r m i n d O p t i m a l l y

Peter Norvig, U.C. Berkeley

There have been several recent art icles in the
SIGART Newslet ter about the game of Mastermind (T.
M. Rao, #82, E. Shapiro, #85, P. Koppstein, #88). This note
describes an a lgor i thm that is dif ferent f rom the others in
that it is specif ical ly designed to be an approximat ion to
the opt imal strategy.

Consider the version of Mastermind where the target
is a sequence of n pegs, chosen (perhaps wi th repeti t ion)
f rom a set of m colors. At each turn, one player (player
G) guesses a sequence of pegs, and the other player
(player R) replies wi th the number of "bulls" (pegs of the
right color in the r ight posit ion) and "cows" (r ight color,
wrong position). Rather than try to analyze how R makes
the initial choice of a target sequence, we assume R is
free to make any response to a guess, provided the
response is consistent wi th all earl ier responses. Thus,
the game can be pictured as an and/or tree where at each
level G has m n possible moves, and R can have up to (n+l
* n+2)/2 moves. The opt imal strategy for G is simply:

S: At each move, make the guess that minimizes the
maximum number of guesses until the end of the game.

There are we l l - known techniques for exhaustively
searching the game tree under this strategy, but unfor-
tunately the size of the tree is prohibi t ively large for even
small values of m and n. We are forced to make two
simpl i fy ing assumptions: (1) never guess a sequence that
cannot possibly be the target sequence, and (2) use the
heuristic that the number of guesses needed to find the
target is direct ly proport ional to the number of possible
sequences. The strategy thus becomes:

S': At each move, make the guess (from among the
possible target sequences) that minimizes (over all
responses by the opponent) the maximum number of
remaining possible target sequences.

Note that there is no need to decide on a class of
"inferences" to extract f rom the responses: the nature of
the and/or tree guarantees that all in format ion is used.
Also note that assumpt ions (1) and (2), whi le reasonable in
most cases, could lead to sub-opt imal play. For example,
consider the game wi th n = 4 pegs and the color set (R G
Y B O P). Suppose it has been determined that the target
sequence matches (R R R ?). Then, fo l lowing assumption
(1) we could take up to 6 more guesses to determine the
target, but if we al low guesses like (R G Y B) and (R R O
P) we wi l l take only 2 or 3 turns. Similarly, assumption (2)
can lead to sub-opt imal play. Perhaps a hybrid solut ion
that used strategy S' at the root of the tree and S nearer
to the leaves would yield better performance wi th accept-
able run t ime.

I have wr i t ten a Franz Lisp program that generates a
program to play Mastermind using strategy S'. In the case
where n = 4 pegs and m = 6 colors, S' has a wors t case of
6 guesses, and an average of 4.47 guesses.

Sample Games

- > (master -mind)
Select a sequence of length 4 f rom the colors:

(G Y B R O P)
Reply wi th the number of exact, and then inexact matches.

(P G P G)? O 2
(G P Y B)? 1 2
(O P G Y)? 0 3
(G O B P)? 2 0
(G Y R P)? 4 0
Aha!

- > (master-mind)
Select a sequence of length 4 f rom the colors:

(G Y B R O P)
Reply wi th the number of exact, and then inexact matches.

(P G P G)? 0 0
(Y O Y B)? 0 1
(O R R R)? 2 1
(R B R R)? 3 0
(R Y R R)? 4 0
Aha!

Generated Code

The generated code for the funct ion master -mind
wi th 6 colors, 4 pegs is about 21 pages long, so instead I
show the code for 2 colors, 3 pegs. In this version the
wors t case is 3 guesses, and the average is 2.3 guesses.
To understand what the funct ion "?" does, and how
"master -mind" was generated, see the lisp code below.

(defun master -mind 0
(pr int - instruct ions '(B W) 3)
(? (w B B)

((0 2) (? (B W W)))
((1 2) (? (B W B)

((1 2) (? (B B W)))))
((I 0) (? (W W W)))
((2 0) (? (W W B)

((1 2) (? (W a W)))
((1 0) (? (B g g)))))))

Lisp Code

;;;; MASTER defines the funct ion master -mind,
;;;; which in turn plays
;;;; the game Mastermind under the strategy S'

(defun master (colors n)
(eval '(defun master -mind 0

(pr int - inst ruct ions ",colors ,n)
,(partit ion (a l l -possibi l i t ies colors n)))))

;;;; PARTITION takes a list of possible sequences,
;;;; and finds the guess
;;;; that minimizes the maximum number

Page 33
SIGART Newsle t ter , October 1984, Number go

;;;; (over all possible replies) of
%;; sequences that would still be possible.

(defun partit ion (possibil it ies)
(cond ((length1? possibil it ies)

'(? . ,possibilities))
(t (let ((best-score 100000)

best-guess score replies best-replies)
(loop for guess in possibil i t ies do

(setq replies (give-repl ies guess possibil it ies))
(setq score (apply #'max (mapcar #' length replies)))
(cond ((lessp score best-score)

(setq best-guess guess)
(setq best-repl ies replies)
(setq best-score score))))

'(? ,best -guess.
,(loop for r in best-repl ies
col lect (list (car r) (partit ion (cdr r)))))))))

;;;; GIVE-REPLIES takes a guess and a list
;;;; of possible sequences and returns
;;;; a l ist of l ists such that the f irst element
;;;; in each sublist is a reply
;;;; (that is a l ist of bulls and cows)
;;;; and the remaining elements of the
;;;; sublist are sequences that would lead to that reply.

(defun give-repl ies (guess possibil i t ies)
(let ((replies nil))

(loop for possibi l i ty in possibi l i t ies do
(cond ((not (equal possibi l i ty guess))

(let* ((b&c (bul ls&cows possibi l i ty guess))
(lookup (assoc b&c replies)))

(cond (lookup (push possibi l i ty (cdr lookup)))
(t (push (list b&c possibil i ty) replies)))))))

replies))

;;;; BULLS&COWS gives the number of exact
;;;; and inexact matches.

(defun bul ls&cows (target guess)
(let ((bulls 0) (cows 0) (target2 nil) (guess2 nil))

(loop for a in guess for b in target do
(cond ((eq a b)

(setq bulls (1+ bulls)))
(t (push a target2) (push b guess2))))

(loop for a in guess2 do
(cond ((memq a target2)

(setq target2 (delq a target2 1))
(setq cows (1* cows)))))

(list bulls cows)))

;;;; ALL-POSSIBILITIES returns a list of
;;;; all sequences of length n
;;;; whose elements are chosen from the set
;;;; colors, al lowing duplicates.

(defun al l -possibi l i t ies (colors n)
(cond ((= n 1) (mapcar #' l ist colors))
(t (loop for color in colors wi th results = nil do

(loop for p in (al l -possibi l i t ies colors (- n 1)) do
(push (cons color p) results))
f inal ly (return results)))))

;;;; PRINT-INSTRUCTIONS tells the player what to do.

(defun pr int - instruct ions (colors n)
(msg "You select a sequence of length "

n " from the colors: " colors \N
"Reply wi th the number of exact,"
" and then inexact matches" \N \N))

;;;; The fexpr '?" makes a guess, reads a reply,
;;;; and dispatches on that.

(defun ? fexpr (args)
(msg (car args) "7 ")
(let* ((bulls (read)) (cows (read))

(program (cadr (assoc (list bulls cows) (cdr args)))))
(cond ((equal bulls (length (car args))) "Aha!)

(program (eval program))
(t' 'Inconsistent))))

THE I N T E L I G E N T S Y S T E M

W. Fritz
Insituto de Investigacion en

Intelligencia Artificial
Uruguay 252 2 D, 1015 Be. As

Argentina

ABSTRACT.

In this article, the brain is observed as o total
system. A hypotesis of the various functions of the
brain is set up and then p a r t i a l l y tested through
the workings of o computer program.

INTRODUCTION.

Today, much research is being done on various ports
of A. I. such as picture recognition, knowledge
representation, expert systems, natural language,
but very little research is done on the total
intelligent system as such.

We suspect that some manifestations, some aspects
of intelligence, can only be demonstrated
artificially, as o total system.

Therefore a hypotesis of the main functions of the
brain is presented and a program shown, which
embodies these functions. Running the program, the
activity of the brain con be observed, and the
results of that activity con be seen.

GENERAL CONSIDERATIONS.

In this paper, we use the word "function" as it is
used in value analysis, and functional analysis.
A function is the abstraction of how an obiect
works, independent of the embodiment, Thus the
function of an ashtray would be to hold ashes,
independent of its shape and whether it is mode of
gloss, metal or ceramics.

Page 34
SIGART Newsletter, October 1984, Number 90

