ARTICLES

Playing Mastermind Optimally
Peter Norvig, U.C. Berkeley

There have been several recent articles in the
SIGART Newsletter about the game of Mastermind (T.
M. Rao, #82, E. Shapiro, #85, P. Koppstein, #88). This note
describes an algorithm that is different from the others in
that it is specifically designed to be an approximation to
the optimal strategy.

Consider the version of Mastermind where the target
is a sequence of n pegs, chosen (perhaps with repetition)
from a set of m colors. At each turn, one player (player
G) guesses a sequence of pegs, and the other player
(player R) replies with the number of "bulls” (pegs of the
right color in the right position) and “cows” (right color,
wrong position). Rather than try to analyze how R makes
the initial choice of a target sequence, we assume R is
free to make any response to a guess, provided the
response is consistent with all earlier responses. Thus,
the game can be pictured as an and/or tree where at each
level G has m" possible moves, and R can have up to (n+1
* n+2)/2 moves. The optimal strategy for G is simply:

S: At each move, make the guess that minimizes the
maximum number of guesses until the end of the game.

There are well-known techniques for exhaustively
searching the game tree under this strategy, but unfor-
tunately the size of the tree is prohibitively large for even
small values of m and n. We are forced to make two
simplifying assumptions: (1) never guess a sequence that
cannot possibly be the target sequence, and (2) use the
heuristic that the number of guesses needed to find the
target is directly proportional to the number of possible
sequences. The strategy thus becomes:

S’. At each move, make the guess (from among the
possible target sequences) that minimizes (over all
responses by the opponent) the maximum number of
remaining possible target sequences.

Note that there is no need to decide on a class of
"inferences” to extract from the responses: the nature of
the and/or tree guarantees that all information is used.
Also note that assumptions (1) and (2), while reasonable in
most cases, could lead to sub-optimal play. For example,
consider the game with n = 4 pegs and the color set (R G
Y B O P). Suppose it has been determined that the target
sequence matches (R R R ?). Then, following assumption
(1) we could take up to 6 more guesses to determine the
target, but if we allow guesses like (R G Y B) and (RR O
P) we will take only 2 or 3 turns. Similarly, assumption (2)
can lead to sub-optimal play. Perhaps a hybrid solution
that used strategy S’ at the root of the tree and S nearer
to the leaves would yield better performance with accept-
able run time.

| have written a Franz Lisp program that generates a
program to play Mastermind using strategy S'. In the case
where n = 4 pegs and m = 6 colors, S’ has a worst case of
6 guesses, and an average of 4.47 guesses.

SIGART Newsletter, October 1984, Number 90

Sample Games

-> (master-mind)

Select a sequence of length 4 from the colors:
(GYBROP)

Reply with the number of exact, and then inexact matches.

(PGPGRO2
(GPYB)Y?12
(OPGY)?03
(GOBPP20
(GYRPP 4O
Aha!

-> (master-mind)

Select a sequence of length 4 from the colors:
(GYBROP)

Reply with the number of exact, and then inexact matches.

(PGPGPROO
(YOYB)?O1
(ORRRP 21
(RBRRP30
(RYRR)?40
Aha!

Generated Code

The generated code for the function master-mind
with 6 colors, 4 pegs is about 21 pages long, so instead |
show the code for 2 colors, 3 pegs. In this version the
worst case is 3 guesses, and the average is 2.3 guesses.
To understand what the function “?” does, and how
“master-mind” was generated, see the lisp code below.

(defun master-mind ()
(print-instructions ‘(B W) 3)
(? (WBB)
({0 2) ? (B W W)))
((12) (? (BWB)
{(12) 2 (BBW))
(1 0) 2 (WW W)
(20) (2 WwB)
((12) 7 (WBW)
{(10) 2 (B B BIM))

Lisp Code

..;; MASTER defines the function master-mind,
;. which in turn plays
;. the game Mastermind under the strategy S’

(defun master (colors n)
{eval '(defun master-mind ()
(print-instructions ’,colors ,n)
[(partition (all-possibilities colors n)))))

:.;;; PARTITION takes a list of possible sequences,

;i and finds the guess
;i that minimizes the maximum number

Page 33



. (over all possible repties) of
;:.; sequences that would still be possible.

(defun partition (possibilities)
(cond ((length1? possibilities)
(? . possibilities))
(t (let ((best-score 100000)
best-guess score replies best-replies)
(loop for guess in possibilities do
(setq replies (give-replies guess possibilities))
(setq score (apply #'max (mapcar #’length replies)))
(cond ((lessp score best-score)
(setq best-guess guess)
(setq best-replies replies)
(setq best-score score))))
(? best-guess .
{loop for r in best-replies
collect (list (car r) (partition (cdr r)))))))))

;:.; GIVE-REPLIES takes a guess and a list

;. of possible sequences and returns

.. a list of lists such that the first element

;i in each sublist is a reply

;o (that is a list of bulls and cows)

.;;; and the remaining elements of the

. sublist are sequences that would lead to that reply.

(defun give-replies (guess possibilities)
(let ((replies nil))
{loop for possibility in possibilities do
(cond ((not (equal possibility guess))
(let* ((b&c (bulls&cows possibility guess))
(lookup (assoc b&c replies)))

(cond (lookup (push possibility (cdr lookup)))
(t (push (list b&c possibility) replies)))))))

replies))

;i BULLS&COWS gives the number of exact
;. and inexact matches.

(defun bulis&cows (target guess)
(let ((bulls 0) (cows 0) (target2 nil) (guess2 nil))
(loop for a in guess for b in target do
(cond ((eq a b)
(setq bulls (1+ bulls)))
(t (push a target2) (push b guess2}})))
(loop for a in guess2 do
(cond ((memq a target2)
(setq target2 (delq a target2 1))
(setq cows (1+ cows)))))
(list bulls cows)))

:i; ALL-POSSIBILITIES returns a list of

... all sequences of length n

;; whose elements are chosen from the set
;. colors, allowing duplicates.

(defun all-possibilities (colors n)
(cond ((= n 1) (mapcar #list colors))
(t (loop for color in colors with results = nil do
(loop for p in (all-possibilities colors (- n 1)) do
(push (cons color p) results))
finally (return results)))})

SIGART Newsletter, October 1984, Number 90

;i PRINT-INSTRUCTIONS tells the player what to do.

(defun print-instructions (colors n)
{msg “You select a sequence of length
n “ from the colors: “ colors \N
“Reply with the number of exact,”
“ and then inexact matches” \N \N))

;. The fexpr "?” makes a guess, reads a reply,
;i and dispatches on that.

(defun ? fexpr (args)
(msg (car args) "? ")
(let* ((bulls (read)) (cows (read))
(program (cadr (assoc (list bulls cows) (cdr args)))))
(cond ((equal bulls (length (car args))} ‘Ahal)
{program (eval program))
(t 'Inconsistent))))

THE INTELIGENT SYSTEM

W. Fritz
Insituto de Investigacion en
Intelligencia Artificial
Uruguay 252 2 D, 1015 Bs. As
Argentina

ABSTRACT.

In this article, the brain is observed as a totol
system. A hypotesis of the various functions of the
brain is set wup aond then partially tested through
the workings of o computer program.

INTRODUCTION.

Today, much research is being done on various parts
of A. 1. such as picture recognition, knowledge
representation, expert systems, naturcl longuage,
but very little research is done on the total
intelligent system as such.

We suspect that some manifestations, some aspects
of _intelligence, can only be demonstroted
artificially, os o total system.

Therefore a hypotesis of the main functions of the
brain is presented ond o program shown, which
embodies these functions. Running the progrom, the
activity of the brain can be observed, and the
results of that activity can be seen.

GENERAL CONSIDERATIONS,

In this paper, we use the word “function” as it is
used in value analysis, and functional analysis.

A function is the abstraction of how an object
works, independent of the embodiment. Thus the
function of an ashtroy would be to hold ashes,
independent of its shape and whether it is mode of
glass, metal or ceromics.

Page 34



