
Self-Reproducing Programs
in Common Lisp

Peter Norvig
Computer Science Division, University of California

Berkeley, CA 94720
norvig@teak.berkeley.edu

This paper reviews the classic self-reproducing expressions in Lisp, and presents
some new ones that are unique to Common Lisp.

The Classic Self-Evaluating Expressions

The search for self-reproducing programs—programs that print their own sources—
is a common exercise going back at least to [Bratley and Millo, 1972]. In Lisp,
there is no such notion as a program per se, so the exercise is instead to find
self-reproducing or self-evaluating expressions. Of course, there are many trivial
self-evaluating atoms, such as these two:

t
2

Thus, it is traditional to limit the quest to non-atomic expressions. It is well-
known that the following expression fits the bill, and as it uses only the most basic
primitives, it will work in any dialect of Lisp:

((lambda (x) (list x (list (quote quote) x)))
(quote (lambda (x) (list x (list (quote quote) x)))))

There are a few interesting variations on this theme. In a modern Lisp with back-
quote notation, a more succinct version is possible:

1



((lambda (x) (list x ‘’,x)) ’(lambda (x) (list x ‘’,x)))

In Common Lisp (but not Scheme) it is possible to write an equivalent but more
obtuse version:

((lambda (list) (list list ‘’,list))
’(lambda (list) (list list ‘’,list)))

Conversely, in a Scheme where the printed representation of a function is the
source code of the function, we can simply say:

((lambda (x) (list x x))
(lambda (x) (list x x)))

This version is also self-reproducing in Common Lisp if you install the fol-
lowing handy macro definition for lambda,

�

and if your Common Lisp prints
macro expansions as the original source code.

(defmacro lambda (args &body body)
"Allow (lambda (x) ...) instead of #’(lambda (x) ...)"
‘#’(lambda ,args .,body))

Jon L White has suggested that the self-reference implicit in these self-evaluating
expressions is reminiscent of the self-reference done by the Y combinator. The
Y combinator is what one needs to add to the lambda calculus to allow recursion
(see [Field and Harrison, 1988, p. 133]). In a normal-order reduction calculus
with Scheme syntax, we can write Y as:

(define (Y f)
((lambda (x) (f (x x)))
(lambda (x) (f (x x)))))

Indeed, the body of Y looks just like the canonical self-evaluation expression with
list replaced by f, and with an extra function call thrown in. We can show that
this is a proper definition of Y with the following proof of the identity (Y f) = (f
(Y f)):

�

If you hate those unsightly #’ marks as much as I do, you’ll use this macro even when you
aren’t playing with self-evaluating expressions.

2



(Y f) = ((lambda (x) (f (x x)))
(lambda (x) (f (x x))))

= (f ((lambda (x) (f (x x)))
(lambda (x) (f (x x)))))

= (f (Y f))

The key to this derivation is that (Y f) reproduces itself, along with an addi-
tional call to f. Our self-evaluating expression reproduces itself in the same way,
but doesn’t add an additional call. However, we can show that

(Y identity) = (identity (Y identity)) = (Y identity)

So (Y identity) is self-evaluating in the normal-order reduction calculus,
although in an applicative-order language like Lisp it results in infinite recursion
(see [Gabriel, 1988] for a discussion of applicative Y).

Some New Self-Evaluating Expressions

Let’s return to the main point of this article: novel self-evaluating expressions.
Once the door is opened to the full lexical conventions of Common Lisp, some
very succinct new solutions are possible. Consider:

#1=’#1#

This is the list whose first element is the symbol quote and whose second el-
ement is the list itself. While the expression is certainly self-evaluating, it does
have the drawback that it is only self-reproducing in an environment where *print-circle*
is non-nil. That restriction is lifted with the following version:

#1=(setq *print-circle* ’#1#)

Those who complain that the goal should be to find a self-evaluating function call
can embed these solutions in lambda expressions:

#1=((lambda () ’#1#))
#1=((lambda () (setq *print-circle* ’#1#)))

3



An alternate approach makes use of the oft-forgotten variable -, which in
Common Lisp is bound to the current input to the read-eval-print loop (just as
* is bound to the previous result). Thus, the following two expressions are self-
reproducing when typed to a read-eval-print loop:

-
(identity -)

The first of these is the only non-constant atomic expression that is guaranteed
to be self-evaluating, while the second is of course non-atomic.

As an aside, the following is one of the shortest infinite looping expression:

(eval -)

Richard Fateman provided a few more short infinite looping expression:

(loop)
#1=(progn #1#)

In fact, an infinite loop results when progn is replaced by any function, or by
multiple-value-call, multiple-value-prog1, tagbody, assert,
unwind-protect, case, prog1, prog2, do, and, or, when or
unless.

In summary, it has been assumed that the best way to write a self-reproducing
program is to bind a variable to part of the program, and then output that variable
twice, along with enough “glue” to comprise the rest of the program. This short
paper shows that it is also possible to get the same results by circular reference
using the Y combinator or Common Lisp’s unique #1= and - conventions.

References

[1] Bratley, P. and Millo, J. Computer Recreations. Self-reproducing automata.
Software Practice and Experience, 2, (1972) 397-400.

[2] Field, A.J. and Harrison, P.G. Functional Programming, Addison-Wesley,
(1988).

[3] Gabriel, R. The Why of Y. Lisp Pointers, 2 2, (1988) 15-25.

4


